Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II alveolar epithelial cells

Author(s):  
Donald L. Shapiro ◽  
Linda L. Nardone ◽  
Seamus A. Rooney ◽  
Etsuro K. Motoyama ◽  
Jose L. Munoz
1976 ◽  
Vol 17 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Michael Lieber ◽  
George Todaro ◽  
Barry Smith ◽  
Andras Szakal ◽  
Walter Nelson-Rees

Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
S Seehase ◽  
B Baron-Luehr ◽  
C Kugler ◽  
E Vollmer ◽  
T Goldmann

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098604
Author(s):  
Dong Yuan ◽  
Yuanshun Liu ◽  
Mengyu Li ◽  
Hongbin Zhou ◽  
Liming Cao ◽  
...  

Objective The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). Methods Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. Results We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. Conclusion Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.


2005 ◽  
Vol 6 (1) ◽  
Author(s):  
Dmitri V Pechkovsky ◽  
Torsten Goldmann ◽  
Corinna Ludwig ◽  
Antje Prasse ◽  
Ekkehard Vollmer ◽  
...  

1982 ◽  
Vol 243 (1) ◽  
pp. C96-C100 ◽  
Author(s):  
B. E. Goodman ◽  
E. D. Crandall

We have observed the formation of domes by type II alveolar epithelial cells harvested from rat lungs. The cells were harvested using elastase and grew to confluence in 3-4 days after plating on plastic. Numerous domes were observed in the monolayers 4-18 days after plating, with peak dome density occurring at days 6-9. When trypsin was used instead of elastase as the harvesting enzyme, many fewer domes were formed by the monolayers, with peak dome density observed at day 5 and no domes seen after 8 days. The life span of an individual dome was about 3-4 h. The presence of domes indicates an intact active transport function of the cells in the monolayer, which may represent an important mechanism for the maintenance of fluid-free air spaces and normal alveolar fluid balance in mammalian lungs in vivo.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document