Cell density affects prolidase and prolinase activity and intracellular amino acid levels in cultured human cells

1985 ◽  
Vol 150 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Isaac Myara ◽  
Christiane Charpentier ◽  
Marthe Gautier ◽  
Alain Lemonnier
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gerta Hoxhaj ◽  
Edward Caddye ◽  
Ayaz Najafov ◽  
Vanessa P Houde ◽  
Catherine Johnson ◽  
...  

The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1.


1985 ◽  
Vol 19 (4) ◽  
pp. 227A-227A
Author(s):  
Jack Metcoff ◽  
Carolyn Johnson ◽  
James Gable

1965 ◽  
Vol 240 (10) ◽  
pp. 3944-3950
Author(s):  
Harry Eagle ◽  
Curtis L. Washington ◽  
Mina Levy

2018 ◽  
Vol 34 (7) ◽  
pp. 1249-1255 ◽  
Author(s):  
Ting Wang ◽  
Kazuyuki Suzuki ◽  
Keisuke Kakisaka ◽  
Mio Onodera ◽  
Kei Sawara ◽  
...  

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 594
Author(s):  
Yuichiro J. Suzuki ◽  
Jian-Jiang Hao

Reactive oxygen species (ROS) play an important role in the development of various pathological conditions as well as aging. ROS oxidize DNA, proteins, lipids, and small molecules. Carbonylation is one mode of protein oxidation that occurs in response to the iron-catalyzed, hydrogen peroxide-dependent oxidation of amino acid side chains. Although carbonylated proteins are generally believed to be eliminated through degradation, we previously discovered the protein de-carbonylation mechanism, in which the formed carbonyl groups are chemically eliminated without proteins being degraded. Major amino acid residues that are susceptible to carbonylation include proline and arginine, both of which are oxidized to become glutamyl semialdehyde, which contains a carbonyl group. The further oxidation of glutamyl semialdehyde produces glutamic acid. Thus, we hypothesize that through the ROS-mediated formation of glutamyl semialdehyde, the proline, arginine, and glutamic acid residues within the protein structure can be converted to each other. Mass spectrometry provided results supporting that proline 45 (a well-conserved residue within the catalytic sequence) of the peroxiredoxin 6 molecule may be converted into glutamic acid in cultured human cells, opening up a revolutionizing concept that biological oxidation elicits the naturally occurring protein engineering process.


2021 ◽  
Vol 8 (7) ◽  
pp. 88
Author(s):  
Tianjiao Huang ◽  
John A. Terrell ◽  
Jay H. Chung ◽  
Chengpeng Chen

Although numerous recent studies have shown the importance of polymeric microfibrous extracellular matrices (ECMs) in maintaining cell behaviors and functions, the mechanistic nexus between ECMs and intracellular activities is largely unknown. Nevertheless, this knowledge will be critical in understanding and treating diseases with ECM remodeling. Therefore, we present our findings that ECM microstructures could regulate intracellular amino acid levels in liver cells mechanistically through integrin β1. Amino acids were studied because they are the fundamental blocks for protein synthesis and metabolism, two vital functions of liver cells. Two ECM conditions, flat and microfibrous, were prepared and studied. In addition to characterizing cell growth, albumin production, urea synthesis, and cytochrome p450 activity, we found that the microfibrous ECM generally upregulated the intracellular amino acid levels. Further explorations showed that cells on the flat substrate expressed more integrin β1 than cells on the microfibers. Moreover, after partially blocking integrin β1 in cells on the flat substrate, the intracellular amino acid levels were restored, strongly supporting integrin β1 as the linking mechanism. This is the first study to report that a non-biological polymer matrix could regulate intracellular amino acid patterns through integrin. The results will help with future therapy development for liver diseases with ECM changes (e.g., fibrosis).


JCI Insight ◽  
2020 ◽  
Vol 5 (9) ◽  
Author(s):  
Ayumi Kanno ◽  
Shun-ichiro Asahara ◽  
Ayuko Furubayashi ◽  
Katsuhisa Masuda ◽  
Risa Yoshitomi ◽  
...  

2021 ◽  
Author(s):  
Pingping Hou ◽  
Xingdi Ma ◽  
Zecheng Yang ◽  
Qiang Zhang ◽  
Chang-Jiun Wu ◽  
...  

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Sign in / Sign up

Export Citation Format

Share Document