An introduction to the collection of plant viruses at the American Type Culture Collection and a review of the literature on plant virus preservation

Cryobiology ◽  
1973 ◽  
Vol 10 (5) ◽  
pp. 469
Author(s):  
J.W. Blizzard
Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1451
Author(s):  
Anne-Katrin Kersten ◽  
Sabrina Scharf ◽  
Martina Bandte ◽  
Peer Martin ◽  
Peter Meurer ◽  
...  

Texture softening of pickled cucumbers does not meet consumers’ quality expectations and leads to economic losses. The factor(s) triggering this phenomenon is still unknown. We investigated the importance of plant viruses such as Cucumber green mottle mosaic tobamovirus (CGMMV) and Zucchini yellow mosaic potyvirus (ZYMV) in the context of softening of pickles. Cucumber plants (Cucumis sativus) were infected by mechanical inoculation, grown under greenhouse conditions and tested positive for the viral infection by ELISA. The severity of virus infection was reflected in yield and symptom expression. Histological and morphological alterations were observed. All fruits were pasteurized, separately stored in jars and subjected to texture measurements after four, six and 12 months. CGMMV-infections were asymptomatic or caused mild symptoms on leaves and fruit, and texture quality was comparable to control. At the same time, fruits of ZYMV-infected plants showed severe symptoms like deformations and discoloration, as well as a reduction in firmness and crunchiness after pasteurization. In addition, histological alterations were detected in such fruits, possibly causing textural changes. We conclude that plant viruses could have a considerable influence on the firmness and crunchiness of pickled cucumbers after pasteurization. It is possible that the severity of symptom expression has an influence on texture properties.


2016 ◽  
Vol 106 (10) ◽  
pp. 1231-1239 ◽  
Author(s):  
Vincent N. Fondong ◽  
Ugrappa Nagalakshmi ◽  
Savithramma P. Dinesh-Kumar

Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat–associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 270 ◽  
Author(s):  
Ina Balke ◽  
Andris Zeltins

Vaccination is one of the most effective public health interventions of the 20th century. All vaccines can be classified into different types, such as vaccines against infectious diseases, anticancer vaccines and vaccines against autoimmune diseases. In recent decades, recombinant technologies have enabled the design of experimental vaccines against a wide range of diseases using plant viruses and virus-like particles as central elements to stimulate protective and long-lasting immune responses. The analysis of recent publications shows that at least 97 experimental vaccines have been constructed based on plant viruses, including 71 vaccines against infectious agents, 16 anticancer vaccines and 10 therapeutic vaccines against autoimmune disorders. Several plant viruses have already been used for the development of vaccine platforms and have been tested in human and veterinary studies, suggesting that plant virus-based vaccines will be introduced into clinical and veterinary practice in the near future.


1959 ◽  
Vol 14 (7) ◽  
pp. 432-433 ◽  
Author(s):  
H. L. Paul

The correlation between molecular weight (MW) of plant viruses and the spectrophotometric value bv (see the preceeding paper) has been established. The dependence of bv on the MW is represented by a straight line on a semilogarithmic scale. By means of this line it is possible to evaluate the MW of a plant virus by measuring bv if the virus entity is a pure ribonucleoproteine containing RNA of a MW of 2 · 106. The resulting value for the MW of the virus is not affected by aggregation or breakdown of the virus, but is disturbed by proteine or nucleoproteine impurities. Therefore, it can be concluded that a preparation of a given virus contains non-virus components if the correlation of figure 1 is not fulfilled satisfactorily.


2002 ◽  
Vol 46 (9) ◽  
pp. 3068-3070 ◽  
Author(s):  
Ellie J. C. Goldstein ◽  
Diane M. Citron ◽  
C. Vreni Merriam ◽  
Yumi A. Warren ◽  
Kerin L. Tyrrell ◽  
...  

ABSTRACT The in vitro susceptibilities of 170 clinical isolates plus 12 American Type Culture Collection strains of Pasteurella species comprising nine species and three Pasteurella multocida subspecies were studied by an agar dilution method. Garenoxacin (BMS-284756), a new des-fluoro(6) quinolone, was active at ≤0.06 μg/ml against all isolates, including four β-lactamase-producing strains, with >90% of the strains susceptible to ≤0.008 μg/ml. Garenoxacin was generally 1 to 2 dilutions more active than levofloxacin and moxifloxacin and was the most active agent tested. Cefoxitin required 1 μg/ml for inhibition of 51 of 182 (29%) of strains, and 3 strains (also β-lactamase producers) were resistant to doxycycline.


2015 ◽  
Vol 105 (6) ◽  
pp. 716-727 ◽  
Author(s):  
Marilyn J. Roossinck ◽  
Darren P. Martin ◽  
Philippe Roumagnac

In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems—aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.


2015 ◽  
Vol 89 (24) ◽  
pp. 12427-12440 ◽  
Author(s):  
Robyn Roberts ◽  
Jincan Zhang ◽  
Laura K. Mayberry ◽  
Satyanarayana Tatineni ◽  
Karen S. Browning ◽  
...  

ABSTRACTSeveral plant viruses encode elements at the 5′ end of their RNAs, which, unlike most cellular mRNAs, can initiate translation in the absence of a 5′ m7GpppG cap. Here, we describe an exceptionally long (739-nucleotide [nt]) leader sequence in triticum mosaic virus (TriMV), a recently emerged wheat pathogen that belongs to thePotyviridaefamily of positive-strand RNA viruses. We demonstrate that the TriMV 5′ leader drives strong cap-independent translation in both wheat germ extract and oat protoplasts through a novel, noncanonical translation mechanism. Translation preferentially initiates at the 13th start codon within the leader sequence independently of eIF4E but involves eIF4G. We truncated the 5′ leader to a 300-nucleotide sequence that drives cap-independent translation from the 5′ end. We show that within this sequence, translation activity relies on a stem-loop structure identified at nucleotide positions 469 to 490. The disruption of the stem significantly impairs the function of the 5′ untranslated region (UTR) in driving translation and competing against a capped RNA. Additionally, the TriMV 5′ UTR can direct translation from an internal position of a bicistronic mRNA, and unlike cap-driven translation, it is unimpaired when the 5′ end is blocked by a strong hairpin in a monocistronic reporter. However, the disruption of the identified stem structure eliminates such a translational advantage. Our results reveal a potent and uniquely controlled translation enhancer that may provide new insights into mechanisms of plant virus translational regulation.IMPORTANCEMany members of thePotyviridaefamily rely on their 5′ end for translation. Here, we show that the 739-nucleotide-long triticum mosaic virus 5′ leader bears a powerful translation element with features distinct from those described for other plant viruses. Despite the presence of 12 AUG start codons within the TriMV 5′ UTR, translation initiates primarily at the 13th AUG codon. The TriMV 5′ UTR is capable of driving cap-independent translationin vitroandin vivo, is independent of eIF4E, and can drive internal translation initiation. A hairpin structure at nucleotide positions 469 to 490 is required for the cap-independent translation and internal translation initiation abilities of the element and plays a role in the ability of the TriMV UTR to compete against a capped RNAin vitro. Our results reveal a novel translation enhancer that may provide new insights into the large diversity of plant virus translation mechanisms.


2020 ◽  
Vol 110 (1) ◽  
pp. 94-105 ◽  
Author(s):  
Cristina Rodríguez-Nevado ◽  
Rosario G. Gavilán ◽  
Israel Pagán

Increasing evidence indicates that in wild ecosystems plant viruses are important ecological agents, and with potential to jump into crops, but only recently have the diversity and population dynamics of wild plant viruses begun to be explored. Theory proposes that biotic factors (e.g., ecosystem biodiversity, host abundance, and host density) and climatic conditions would determine the epidemiology and evolution of wild plant viruses. However, these predictions seldom have been empirically tested. For 3 years, we analyzed the prevalence and genetic diversity of Potyvirus species in preserved riparian forests of Spain. Results indicated that potyviruses were always present in riparian forests, with a novel generalist potyvirus species provisionally named Iberian hop mosaic virus (IbHMV), explaining the largest fraction of infected plants. Focusing on this potyvirus, we analyzed the biotic and climatic factors affecting virus infection risk and population genetic diversity in its native ecosystem. The main predictors of IbHMV infection risk were host relative abundance and species richness. Virus prevalence and host relative abundance were the major factors determining the genetic diversity and selection pressures in the virus population. These observations support theoretical predictions assigning these ecological factors a key role in parasite epidemiology and evolution. Finally, our phylogenetic analysis indicated that the viral population was genetically structured according to host and location of origin, as expected if speciation is largely sympatric. Thus, this work contributes to characterizing viral diversity and provides novel information on the determinants of plant virus epidemiology and evolution in wild ecosystems.


Author(s):  
Yohanes Bosko Ardywinoto ◽  
Hedijanti Joenoes ◽  
Boy M Bachtiar

Objective: The aim of this study is to analyze the inhibitory potential of Streptococcus salivarius isolates from the saliva and dorsum of the tongue of adults on Enterococcal faecalis American Type Culture Collection (ATCC) 29212.Methods: Deferred antagonism and agar well diffusion methods were used to analyze the potential of S. salivarius to inhibit E. faecalis growth with S. salivarius ATCC 13419 as the positive control.Result: The maximum inhibitor diameter for each isolation was 11.17 mm at 1010 CFU for the dorsum of tongue isolates and 8.17 mm at 109 CFU for saliva isolates.Conclusions: Clinical S. salivarius isolates from the dorsum of tongue had greater potential for inhibiting E. faecalis growth compared to the saliva isolates and control bacteria.


Sign in / Sign up

Export Citation Format

Share Document