Induction of freezing tolerance in spinach is associated with the synthesis of low temperature induced proteins

Cryobiology ◽  
1986 ◽  
Vol 23 (6) ◽  
pp. 557
Author(s):  
C.L. Guy ◽  
Dale Haskell
2001 ◽  
Vol 67 (11) ◽  
pp. 5171-5178 ◽  
Author(s):  
Jeroen A. Wouters ◽  
Hélène Frenkiel ◽  
Willem M. de Vos ◽  
Oscar P. Kuipers ◽  
Tjakko Abee

ABSTRACT Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000ΔAB lacks the tandemly orientatedcspA and cspB genes, and NZ9000ΔABE lackscspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of thecspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756–3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10°C was significantly reduced in strain NZ9000ΔABE but not in strain NZ9000ΔAB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection.


1977 ◽  
Vol 69 (1) ◽  
pp. 13-21
Author(s):  
DENNIS J. MURPHY

1. A time course of the changes in blood Ca2+ and freezing tolerance of Modiolus demissus (Dillwyn) demonstrated that increases in freezing tolerance parallel increases in blood Ca2+. The increases in freezing tolerance occurred rapidly, suggesting that Ca2+ affects freezing tolerance directly by its presence in the blood. 2. The presence of La3+ reduced the freezing tolerance of isolated foot muscle. Thus, Ca2+ appears to increase freezing tolerance directly by binding to cell membranes. 3. The loss of the contractile response of freeze-thawed foot muscle to Ach, KCl and caffeine and the continued response to CaCl2 suggested that cell membranes are the primary sites of freezing injury. 4. The increase in blood Ca2+ following low-temperature acclimation accounted for only 40% of the total change in freezing tolerance. Therefore, other mechanisms responsible for increasing the freezing tolerance of M. demissus following low temperature acclimation also exist.


1977 ◽  
Vol 69 (1) ◽  
pp. 1-12
Author(s):  
DENNIS J. MURPHY

1. A physiological mechanism responsible for increasing the freezing tolerance of the bivalve Modiolus demissus (Dillwyn) following low-temperature acclimation was demonstrated. 2. The rates of oxygen consumption of M. demissus acclimated to temperatures between 0 and 24 °C were presented as an Arrhenius plot. A change in slope occurred at 10 °C, suggesting that temperature alone was not responsible for the increased decline in the rate of oxygen consumption below 10 °C. 3. Low-temperature acclimation had no effect on blood Na+ or K+ concentrations but did reduce the concentration of blood Mg2+ and, in addition, resulted in the accumulation of end-products characteristic of anaerobic metabolism - tissue alanine and proline, and blood Ca2+. Furthermore, maintenance of M. demissus under anaerobic conditions increased freezing tolerance. 4. Taken together, these data indicate that the increased freezing tolerance of M. demissus acclimated to low temperatures involves a conversion to anaerobic metabolism. 5. The increase in blood Ca2+ following low-temperature acclimation was associated with the increased freezing tolerance. Finally, Mg2+ simulated the effect of Ca2+ on freezing tolerance, but was only 20% as effective. 6. These results suggest that a Ca2+-dependent mechanism responsible for increasing the freezing tolerance of M. demissus exists, and that the increase in blood Ca2+ is due to a conversion to anaerobic metabolism.


2019 ◽  
Vol 60 (12) ◽  
pp. 2744-2757 ◽  
Author(s):  
Sung Mi Cho ◽  
Sanghee Kim ◽  
Hojin Cho ◽  
Hyoungseok Lee ◽  
Jun Hyuck Lee ◽  
...  

Abstract Microalgal ice-binding proteins (IBPs) in the polar region are poorly understood at the genome-wide level, although they are important for cold adaptation. Through the transcriptome study with the Arctic green alga Chloromonas sp. KNF0032, we identified six Chloromonas IBP genes (CmIBPs), homologous with the previously reported IBPs from Antarctic snow alga CCMP681 and Antarctic Chloromonas sp. They were organized with multiple exon/intron structures and low-temperature-responsive cis-elements in their promoters and abundantly expressed at low temperature. The biological functions of three representative CmIBPs (CmIBP1, CmIBP2 and CmIBP3) were tested using in vitro analysis and transgenic plant system. CmIBP1 had the most effective ice recrystallization inhibition (IRI) activities in both in vitro and transgenic plants, and CmIBP2 and CmIBP3 had followed. All transgenic plants grown under nonacclimated condition were freezing tolerant, and especially 35S::CmIBP1 plants were most effective. After cold acclimation, only 35S::CmIBP2 plants showed slightly increased freezing tolerance. Structurally, the CmIBPs were predicted to have β-solenoid forms with parallel β-sheets and repeated TXT motifs. The repeated TXT structure of CmIBPs appears similar to the AidA domain-containing adhesin-like proteins from methanogens. We have shown that the AidA domain has IRI activity as CmIBPs and phylogenetic analysis also supported that the AidA domains are monophyletic with ice-binding domain of CmIBPs, and these results suggest that CmIBPs are a type of modified adhesins.


Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 288 ◽  
Author(s):  
Nasser Bahrman ◽  
Emilie Hascoët ◽  
Odile Jaminon ◽  
Frédéric Dépta ◽  
Jean-François Hû ◽  
...  

Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 580a-580
Author(s):  
Milton E. Tignor ◽  
John M. Davis ◽  
Frederick S. Davies ◽  
Wayne B. Sherman

Poncirus trifoliata is a comparatively hardy, cross compatible, and graft compliant relative of Citrus. The citrus industry in Florida has suffered immense economic losses due to freezes. Although much research has been done in citrus freeze hardiness, little work has been on the early induction of freeze tolerance by low temperature. Poncirus trifoliata `Rubidoux' seedlings were germinated in perlite under intermittent mist at about 25°C and natural daylight conditions in a greenhouse and grown 2 weeks. See dlings were then transferred into a growth chamber at 25°C and 16 hour daylength for 1 week. Temperature was lowered to 10°C and tissue samples were collected at 0, 6, 24, and 168 hours. Freezing tolerance, at –6.7°C as determined by electrolyte leakage, and stem (leaves attached) water potential, measured using a pressure bomb, were also recorded for a subset of seedlings for the above intervals. After exposure to low temperature for 48 hours a red coloration became visible at the petiole leaflet junction an d at the buds, with subsequent exposure to low temperature the coloration spread to the leaves. Clones for phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and chlorophyll ab binding protein (CAB), and chalcone synthase (CHS) were used to probe RNA isolated from P. trifoliata. PAL and 4CL transcripts increased in response to the low temperature. Significant increases in freeze hardiness occurred within 6 hours in the leaves, and increases continued for up to one week. Water potential increased from –0.6 to –2.0 MPa after 6 hours, then returned to –0.6 MPa after 1 week. These data indicate that increases in freezing tolerance and changes in water potential and gene expression can be detected shortly after low temperature treatments are imposed on P. trifoliata seedlings.


Author(s):  
Ellen Zuther ◽  
Stephanie Schaarschmidt ◽  
Axel Fischer ◽  
Alexander Erban ◽  
Majken Pagter ◽  
...  

2020 ◽  
Author(s):  
Devin Noordermeer ◽  
Vera Velasco ◽  
Ingo Ensminger

<p>In the next several decades, warming in the northern hemisphere will result in asynchronous phasing between the temperature and photoperiod signals that evergreen conifers rely upon for cold hardening during autumn. Our study investigated intraspecific variation in photosynthetic and photoprotective mechanisms in Douglas-fir (Pseudotsuga menziesii) originating from contrasting climates during simulated summer and autumn conditions, as well as how autumn warming affects downregulation of photosynthesis and development of cold hardening. Following growth under long days and summer temperature (LD/ST; 16 h photoperiod; 22 °C/13 °C day/night), Douglas-fir seedlings from two interior and two coastal provenances were acclimated to simulated autumn conditions with short days and either low temperature (SD/LT; 8 h photoperiod; 4 °C/-4 °C day/night) or high temperature (SD/HT; 8 h photoperiod; 19 °C/11 °C day/night). Exposure to low temperature induced increase in size and de-epoxidation of the xanthophyll cycle pigment pool, development of sustained nonphotochemical quenching, and downregulation of photosynthetic activity. SD/HT seedlings exhibited no downregulation of photosynthesis, corresponding with no change in xanthophyll cycle pigment de-epoxidation and no development of sustained nonphotochemical quenching. However, freezing tolerance development for all provenances was not impaired under SD/HT relative to SD/LT. Interior Douglas-fir provenances developed greater freezing tolerance relative to coastal provenances under both temperature treatments. Our findings suggest that short photoperiod alone is insufficient to induce downregulation of photosynthesis in autumn for Douglas-fir. However, this prolonged period of photosynthetic activity does not appear to bear a trade-off of impaired freezing tolerance.</p>


Sign in / Sign up

Export Citation Format

Share Document