Ammonium chloride affects receptor number and lateral mobility of the vasopressin V2-type receptor in the plasma membrane of LLC-PK1 renal epithelial cells: Role of the cytoskeleton

1990 ◽  
Vol 191 (1) ◽  
pp. 121-128 ◽  
Author(s):  
David A. Jans ◽  
Reiner Peters ◽  
Patricia Jans ◽  
Falk Fahrenholz
2012 ◽  
Vol 38 (2) ◽  
pp. 204-214 ◽  
Author(s):  
S. Tayal ◽  
S. Duggal ◽  
P. Bandyopadhyay ◽  
A. Aggarwal ◽  
S. Tandon ◽  
...  

Development ◽  
2021 ◽  
pp. dev.196956
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be fully elucidated. Here we show that, similar to the recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


2001 ◽  
Vol 114 (7) ◽  
pp. 1331-1341 ◽  
Author(s):  
A.K. Criss ◽  
D.M. Ahlgren ◽  
T.S. Jou ◽  
B.A. McCormick ◽  
J.E. Casanova

The bacterial pathogen Salmonella typhimurium colonizes its animal hosts by inducing its internalization into intestinal epithelial cells. This process requires reorganization of the actin cytoskeleton of the apical plasma membrane into elaborate membrane ruffles that engulf the bacteria. Members of the Ρ family of small GTPases are critical regulators of actin structure, and in nonpolarized cells, the GTPase Cdc42 has been shown to modulate Salmonella entry. Because the actin architecture of epithelial cells is organized differently from that of nonpolarized cells, we examined the role of two ‘Rgr; family GTPases, Cdc42 and Rac1, in invasion of polarized monolayers of MDCK cells by S. typhimurium. Surprisingly, we found that endogenous Rac1, but not Cdc42, was activated during bacterial entry at the apical pole, and that this activation required the bacterial effector protein SopE. Furthermore, expression of dominant inhibitory Rac1 but not Cdc42 significantly inhibited apical internalization of Salmonella, indicating that Rac1 activation is integral to the bacterial entry process. In contrast, during basolateral internalization, both Cdc42 and Rac1 were activated; however, neither GTPase was required for entry. These findings, which differ significantly from previous observations in nonpolarized cells, indicate that the host cell signaling pathways activated by bacterial pathogens may vary with cell type, and in epithelial tissues may further differ between plasma membrane domains.


2016 ◽  
Vol 310 (9) ◽  
pp. C764-C772 ◽  
Author(s):  
Ensaf Almomani ◽  
Rawad Lashhab ◽  
R. Todd Alexander ◽  
Emmanuelle Cordat

Mutations in the SLC4A1 gene coding for kidney anion exchanger 1 (kAE1) cause distal renal tubular acidosis (dRTA). We investigated the fate of the most common truncated dominant dRTA mutant kAE1 R901X. In renal epithelial cells, we found that kAE1 R901X is less abundant than kAE1 wild-type (WT) at the plasma membrane. Although kAE1 WT and kAE1 R901X have similar half-lives, the decreased abundance of kAE1 R901X at the surface is due to an increased endocytosis rate and a decreased recycling rate of endocytosed proteins. We propose that, in polarized renal epithelial cells, the apically mistargeted kAE1 R901X mutant is endocytosed faster than kAE1 WT and its recycling to the basolateral membrane is delayed. This resets the equilibrium, such that kAE1 R901X resides predominantly in an endomembrane compartment, thereby likely participating in development of dRTA disease.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1057
Author(s):  
Richard Bouley ◽  
Naofumi Yui ◽  
Abby Terlouw ◽  
Pui W. Cheung ◽  
Dennis Brown

We previously showed that in polarized Madin–Darby canine kidney (MDCK) cells, aquaporin-2 (AQP2) is continuously targeted to the basolateral plasma membrane from which it is rapidly retrieved by clathrin-mediated endocytosis. It then undertakes microtubule-dependent transcytosis toward the apical plasma membrane. In this study, we found that treatment with chlorpromazine (CPZ, an inhibitor of clathrin-mediated endocytosis) results in AQP2 accumulation in the basolateral, but not the apical plasma membrane of epithelial cells. In MDCK cells, both AQP2 and clathrin were concentrated in the basolateral plasma membrane after CPZ treatment (100 µM for 15 min), and endocytosis was reduced. Then, using rhodamine phalloidin staining, we found that basolateral, but not apical, F-actin was selectively reduced by CPZ treatment. After incubation of rat kidney slices in situ with CPZ (200 µM for 15 min), basolateral AQP2 and clathrin were increased in principal cells, which simultaneously showed a significant decrease of basolateral compared to apical F-actin staining. These results indicate that clathrin-dependent transcytosis of AQP2 is an essential part of its trafficking pathway in renal epithelial cells and that this process can be inhibited by selectively depolymerizing the basolateral actin pool using CPZ.


2002 ◽  
Vol 283 (6) ◽  
pp. G1264-G1275 ◽  
Author(s):  
Eiji Nakamura ◽  
Susan J. Hagen

Ammonia is a cytotoxic factor produced during Helicobacter pylori infection that may reduce the survival of surface epithelial cells. Here we examine whether ammonia kills cells and whether l-glutamine (l-Gln) protects against cell death by stimulating ammonia detoxification pathways. Cell viability and vacuolation were quantified in rat gastric epithelial (RGM1) cells incubated with ammonium chloride at pH 7.4 in the presence or absence of l-Gln. Incubation of RGM1 cells with ammonium chloride caused a dose-dependent increase in cell death and vacuolation, which were both inhibited byl-Gln. We show that RGM1 cells metabolize ammonia to urea via arginase, a process that is stimulated by l-Gln and results in reduced ammonia cytotoxicity. l-Gln also inhibits the uptake and facilitates the extrusion of ammonia from cells. Blockade of glutamine synthetase did not reduce the survival of RGM1 cells, demonstrating that the conversion ofl-glutamate and ammonia to l-Gln is not involved in ammonia detoxification. Thus our data support a role forl-Gln and arginase in protection against ammonia-induced cell death in gastric epithelial cells.


2002 ◽  
Vol 70 (11) ◽  
pp. 5965-5971 ◽  
Author(s):  
Patricia Ayala ◽  
Brandi Vasquez ◽  
Lee Wetzler ◽  
Magdalene So

ABSTRACT The immunoglobulin A (IgA) protease secreted by pathogenic Neisseria spp. cleaves Lamp1, thereby altering lysosomes in a cell and promoting bacterial intracellular survival. We sought to determine how the IgA protease gains access to cellular Lamp1 in order to better understand the role of this cleavage event in bacterial infection. In a previous report, we demonstrated that the pilus-induced Ca2+ transient triggers lysosome exocytosis in human epithelial cells. This, in turn, increases the level of Lamp1 at the plasma membrane, where it can be cleaved by IgA protease. Here, we show that porin also induces a Ca2+ flux in epithelial cells. This transient is similar in nature to that observed in phagocytes exposed to porin. In contrast to the pilus-induced Ca2+ transient, the porin-induced event does not trigger lysosome exocytosis. Instead, it stimulates exocytosis of early and late endosomes and increases Lamp1 on the cell surface. These results indicate that Neisseria pili and porin perturb Lamp1 trafficking in epithelial cells by triggering separate and distinct Ca2+-dependent exocytic events, bringing Lamp1 to the cell surface, where it can be cleaved by IgA protease.


Sign in / Sign up

Export Citation Format

Share Document