scholarly journals Fatty acid composition changes in mitochondrial membranes induced by dietary long chain fatty acids

FEBS Letters ◽  
1976 ◽  
Vol 68 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Michael T. Clandinin

The article presents the results of an assessment of the effect of making oil (Echium vulgare) rich in 18: 4 n-3 PUFAs on the fatty acid composition and qualitative indicators of beef. The introduction of this oil suggested an increase in the deposition of C18: 3n-3 and the long chain fatty acids C20 and C22, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in muscle lipids. It was found that the introduction of echium oil or linseed oil in the diet of cattle contributed to the improvement of the profile of long-chain C20 fatty acids in beef, but had a negligible effect on its quality indicators


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 682-682 ◽  
Author(s):  
Kayla Dillard ◽  
Morgan Coffin ◽  
Gabriella Hernandez ◽  
Victoria Smith ◽  
Catherine Johnson ◽  
...  

Abstract Objectives Non-alcoholic fatty liver disease (NAFLD) represents the major cause of pediatric chronic liver pathology in the United States. The objective of this study was to compare the relative effect of inclusion of isocaloric amounts of saturated medium-chain fatty acids (hydrogenated coconut oil), saturated long-chain fatty acids (lard) and unsaturated long-chain fatty acids (olive oil) on endpoints of NAFLD and insulin resistance. Methods Thirty-eight 15-d-old Iberian pigs were fed 1 of 4 diets containing (g/kg body weight × d) 1) control (CON; n = 8): 0 g fructose, 10.5 g fat, and 187 kcal metabolizable energy (ME), 2) lard (LAR; n = 10): 21.6 g fructose, 17.1 g fat (100% lard) and 299 kcal ME, 3) hydrogenated coconut oil (COCO; n = 10): 21.6 g fructose, 16.9 g fat (42.5% lard and 57.5% coconut oil) and 299 kcal ME, and 4) olive oil (OLV, n = 10): 21.6 g fructose, 17.1 g fat (43.5% lard and 56.5% olive oil) and 299 kcal ME, for 9 consecutive weeks. Body weight was recorded every 3 d. Serum markers of liver injury and dyslipidemia were measured on d 60 at 2 h post feeding, with all other serum measures assessed on d 70. Liver tissue was collected on d 70 for histology, triacylglyceride (TG) quantification, and metabolomics analysis. Results Tissue histology indicated the presence of steatosis in LAR, COCO and OLV compared with CON (P ≤ 0.001), with a further increase in in non-alcoholic steatohepatitis (NASH) in OLV and COCO compared with LAR (P ≤ 0.01). Alanine and aspartate aminotransferases were higher in COCO and OLV (P ≤ 0.01) than CON. All treatment groups had lower liver concentrations of methyl donor's choline and betaine versus CON, while bile acids were differentially changed (P ≤ 0.05). COCO had higher levels of TGs with less carbons (Total carbons < 52) than all other groups (P ≤ 0.05). Several long-chain acylcarnitines involved in fat oxidation were higher in OLV versus all other groups (P ≤ 0.05). Conclusions Inclusion of fats enriched in medium-chain saturated and long-chain unsaturated fatty acids in a high-fructose high-fat diet increased liver injury, compared with fats with a long-chain saturated fatty acid profile. Further research is required to investigate the mechanisms causing this difference in physiological response to these dietary fat sources. Funding Sources ARI, AcornSeekers.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


1991 ◽  
Vol 10 (3) ◽  
pp. 325-340 ◽  
Author(s):  
D. R. Webb ◽  
R. A. Sanders

Caprenin (CAP) is a triglyceride that primarily contains caprylic (C8:0), capric (C10:0), and behenic (C22:0) acids. This study was undertaken to determine whether or not CAP is qualitatively digested, absorbed, and rearranged like other dietary fats and oils that contain these medium-chain and very long-chain fatty acids. In vitro results showed that neat CAP, coconut oil (CO) and peanut oil (PO) were hydrolyzed by porcine pancreatic lipase. All of the neat triglycerides also were digested in vivo by both male and female rats. This was shown by the recovery of significantly more extractable lymphatic fat than with fat-free control animals and by the recovery of orally administered triglyceride-derived fatty acids in lymph triglycerides. However, substantially more PO (74%) and CO (51%) were recovered in lymph relative to CAP (10%). These quantitative differences are consistent with the fatty acid composition of each triglyceride and primary routes of fatty acid uptake. The 24-h lymphatic recovery of CAP-derived C8:0, C10:0, and C22:0 averaged 3.9%, 17.8%, and 11.2%, respectively, for male and female rats. The C8:0 and C10:0 results approximated those obtained with CO (2.0% and 16.3%, respectively). In contrast, the 24-h absorbability of C22:0 in CAP was significantly less than that seen in PO (55.4%). Finally, there was no evidence of significant rearrangement of the positions of fatty acids on glycerol during digestion and absorption. Those fatty acids recovered in lymphatic fat tended to occupy the same glyceride positions that they did in the neat administered oils. However, the lymph fats recovered from all animals dosed with fat emulsions were enriched with endogenous lymph fatty acids. It is concluded that CAP is qualitatively digested, absorbed, and processed like any dietary fat or oil that contains medium-chain and very long-chain fatty acids.


1999 ◽  
Vol 1999 ◽  
pp. 115-115 ◽  
Author(s):  
A.M. Wachira ◽  
L.A. Sinclair ◽  
R.G. Wilkinson ◽  
G. Demirel ◽  
M. Enser ◽  
...  

The benefits of long chain polyunsaturated fatty acids (PUFA) to human health, especially those of the n-3 series are now widely recognised. In a previous experiment (Wachira et al. 1998) supplementing diets with whole linseed or fish oil increased n-3 fatty acid levels in lamb muscle. To raise these further the whole linseed can be treated with formaldehyde to increase protection in the rumen. Dietary antioxidants such as vitamin E can control lipid oxidation but information on their effects on lamb performance and fatty acid composition is limited. The current experiments investigated the effects of different dietary PUFA sources and vitamin E levels on growth and fatty acid composition in two sheep breeds. Detailed results of the effects of vitamin E are presented in the accompanying abstract by Enser et al.


Sign in / Sign up

Export Citation Format

Share Document