Filamin, a high relative molecular mass actin-binding protein from smooth muscles, promotes actin polymerization

FEBS Letters ◽  
1981 ◽  
Vol 136 (1) ◽  
pp. 98-100 ◽  
Author(s):  
V.E. Koteliansky ◽  
V.P. Shirinsky ◽  
G.N. Gneushev ◽  
V.N. Smirnov
1980 ◽  
Vol 87 (3) ◽  
pp. 841-848 ◽  
Author(s):  
J H Hartwig ◽  
J Tyler ◽  
T P Stossel

Branching filaments with striking perpendicularity form when actin polymerizes in the presence of macrophage actin-binding protein. Actin-binding protein molecules are visible at the branch points. Compared with actin polymerized in the absence of actin-binding proteins, not only do the filaments branch but the average length of the actin filaments decreases from 3.2 to 0.63 micrometer. Arrowhead complexes formed by addition of heavy meromyosin molecules to the branching actin filaments point toward the branch points. Actin-binding protein also accelerates the onset of actin polymerization. All of these findings show that actin filaments assemble from nucleating sites on actin-binding protein dimers. A branching polymerization of actin filaments from a preexisting lattice of actin filaments joined by actin-binding protein molecules could generate expansion of cortical cytoplasm in amoeboid cells.


2013 ◽  
Vol 288 (39) ◽  
pp. 28382-28397 ◽  
Author(s):  
Mónica Gordón-Alonso ◽  
Vera Rocha-Perugini ◽  
Susana Álvarez ◽  
Ángeles Ursa ◽  
Nuria Izquierdo-Useros ◽  
...  

2006 ◽  
Vol 45 (3B) ◽  
pp. 2328-2332 ◽  
Author(s):  
Kosaku Kato ◽  
Yukiko Ohmori ◽  
Takeomi Mizutani ◽  
Hisashi Haga ◽  
Kazuyo Ohashi ◽  
...  

2008 ◽  
Vol 283 (41) ◽  
pp. 27973-27981 ◽  
Author(s):  
Akira Nomachi ◽  
Michiru Nishita ◽  
Daisuke Inaba ◽  
Masahiro Enomoto ◽  
Mayumi Hamasaki ◽  
...  

Author(s):  
J E B Fox ◽  
C C Reynolds ◽  
J K Boyles ◽  
R A Abel ◽  
M M Johnson

Platelet function is inhibited by agents that elevate intracellular cyclic AMP concentrations, presumably as a result of the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are of Mr = 250,000, Mr = 51.000 (P51), Mr = 36,000 (P36), Mr = 24,000 (P24), and Mr = 22.000 (P22). The Mr = 250,000 polypeptide is actin-binding protein, but the identity of the other polypeptides 1s unknown. In the present study, we identified the P24 polypeptide. Platelets were radiolabeled with [32P]P1 and then Incubated for 2-5 min in the presence or absence of 5 μM prostaglandin E1 (PGE1). The PGE1-induced phosphorylation of P24 was detected on autoradiograms of SDS-gels. Since P24 has been shown to be membrane-associated, its molecular weight was compared with those of known membrane proteins. P24 comigrated with the β-chain of purified GP Ib on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ibβ is disulfide-linked to GP Ibα and migrates with Mr = 170,000). Like GP Ibβ, P24 was associated with actin filaments in Triton X-100 lysates. Both GP Ibβ and P24 were selectively associated with filaments of the membrane skeleton and were released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (that lacked GP Ib) to PGE1 resulted in phosphorylation of actin-binding protein, P51, P36, and P22, but not P24. We conclude that P24 is GP Ibβ. To determine whether phosphorylation of GP Ibβ is responsible for the inhibitory effects of PGE1 on platelets, we compared the action of PGE1 on control platelets with that on Bernard-Soulier platelets. One of the ways in which PGE1 inhibits platelet activation is by inhibiting the polymerization of actin. While PGE1 inhibited actin polymerization in control platelets, it did not in Bernard-Soulier platelets. We conclude that GP Ibβ is phosphorylated by agents that elevate cyclic AMP and that phosphorylation of this glycoprotein results in inhibition of platelet function.


Sign in / Sign up

Export Citation Format

Share Document