4423989 Machine tool assembly with rotatable cutting tool

1984 ◽  
Vol 24 (3) ◽  
pp. 246-247
2014 ◽  
Vol 556-562 ◽  
pp. 1354-1357
Author(s):  
Li Gong Cui ◽  
Gui Qiang Liang ◽  
Fang Shao

This paper presents a mathematical method to analyze the influence of each machine tool part deformation on the machining accuracy. Taking a 3-axis machine tool as an example, this paper divides the machine tool into the cutting tool sub-system and workpiece sub-system. Taking the deformation of lower surface of the machine bed as the research target, the mathematical model of the deformation on the displacement of the cutting point was established. In order to distribute the stiffness of each part, the contribution degree of each part on the machining accuracy was analyzed. Using this mathematical model, the stiffness of each part can be distributed at the design stage of the machine tool, and the machining accuracy of the machine tool can be improved economically.


Author(s):  
P. Franco ◽  
M. Estrems ◽  
F. Faura

Milling is a widely used manufacturing process with the main purpose of generating high precision mechanical components of shapes and sizes given by the numerical control programmed cutting tool trajectory. These mechanical components frequently needs the application of milling operations in order to satisfy the technical specifications that corresponds to their dimensional, geometrical and surface quality requirements. For that reason, the effects of different factors such as cutting tool dynamics, fixturing system design, workpiece material behaviour and applied cutting forces on the desired dimensional precision must be studied, as well as cutting tool and machine tool performance. In this work, the relation between machine tool inaccuracies and geometrical tolerances is analyzed, and a methodology is proposed for improving flatness in planing operations by the correction of imperfections detected in cutting tool displacement according to machine tool axis. These machine tool error correction methodology could be implemented in the current CAD/CAM/CAPP techniques as a means of increasing the milling process performance by identification and correction of CNC milling machine imperfections. The deviations in machine tool displacement during cutting process are identified by metrological analysis, and a modified trajectory for cutting tool is defined by direct numerical control (DNC) from systematic error compensation in machine tool.


2013 ◽  
Vol 706-708 ◽  
pp. 1672-1675 ◽  
Author(s):  
Long Bo Chen ◽  
Ji Lin Guo ◽  
Tian Rui Zhou ◽  
Tao Jiang

Vibration in turning processing is associated with free vibration, forced vibration and self-excited vibration, the composition and machine tool, tool and workpiece process system dynamic characteristic.A detailed analysis of the main types of vibration in turning and the causes, and put forward from the aspects of cutting tool, fixture, cutting process, reduce or eliminate vibration measures.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012071
Author(s):  
Liyao Li

Abstract Cutting chatter is a strong relative vibration between cutting tool and work piece in machining process, which will reduce cutting quality and cutting efficiency, and shorten the service life of cutting tool and machine tool. As long as cutting is carried out in production, vibration will occur, and chatter is a strong self-excited vibration between machining work piece and cutting tool. Flutter problem will occur in almost all cutting processes, which will cause a series of problems such as the reduction of dimensional accuracy of machined work pieces, tool damage and so on. In the dynamic design and dynamic analysis of machine tool structure, in order to evaluate and improve the ability of machine tool to resist chatter, and to select the cutting conditions without chatter, it is necessary to judge the cutting stability of machine tool. How to improve the advanced technology of manufacturing industry is an important topic for manufacturing researchers, and the research on the detection of cutting chatter stability has important practical significance for promoting the development of cutting manufacturing industry to high-end technology.


2013 ◽  
Vol 816-817 ◽  
pp. 211-215 ◽  
Author(s):  
Masahiro Hagino ◽  
Takashi Inoue ◽  
A.G. Olabi ◽  
Wataru Aoki ◽  
Fumiaki Matsumoto

In machining to CFRP material has many important problems, about necessary of high-precision machining, improvement of tool life and dispose of cutting chips etc. Especially in case of twist drill almost cant collect under 0.5 μm cutting chip, the fine-cutting chips diffuse into the sliding table and spindle head with the machine. Moreover, the fine-cutting chip is mixed and diffuse into the atmosphere. The possibility to remarkable decline of working efficiency so the dust-collection provision technology is wished. It is important also from the viewpoint of keep safety of a worker and work environment preservation because the CFRP utilizes in market for industrial structure materials, is increasing. As one method of solving this problem which aspirates and ejects cutting chip from a penetration hole through outside in the central part of the drill shank the new tool and cyclone type dust-collection system were developed. These technologies were used for perforate of CFRP material, and investigated about the cutting characteristic of the hollow type drill, and the effect of work environment improvement to dust-collection performance of cutting chips. As the result, our development machine tool and cutting tool can collect approximate 99.5% cutting chip.


2006 ◽  
Vol 315-316 ◽  
pp. 656-660
Author(s):  
Song Zhang ◽  
Xing Ai ◽  
Jun Zhao ◽  
J.G. Liu

During high-speed machining, in order to make cutting tools work reliably and obtain ideal machining quality, not only good static characteristics, but also good dynamic characteristics are necessary. In this paper, with the help of the close combination of experimental research and modal parameter identification technique, the dynamic characteristics of the machine tool/cutting tool system were analyzed. Experimental results indicated that studying the effect of the dynamic characteristics on cutting force, machining accuracy and surface roughness could provide theoretical basis for effectively excluding the resonance zone that obviously destroyed machining quality and then optimizing cutting parameters further.


2007 ◽  
Vol 2 (4) ◽  
pp. 344-350 ◽  
Author(s):  
Jun Wu ◽  
Jinsong Wang ◽  
Liping Wang ◽  
Tiemin Li ◽  
Yue Liu

This paper focuses on the dynamic modeling and counterweight optimization of the two degree of freedom planar parallel manipulator, which is a subpart of a hybrid machine tool. Based on a kinematic analysis, the dynamic equation is derived by using the Newton-Euler approach. Then, three counterweight modes are presented for the parallel manipulator. According to the cutting force model and motion planning of the cutting tool, the dynamic simulations with three counterweight modes are performed, and the mass of counterweight in each counterweight mode is optimized by minimizing the sum of mean square values of actuator forces. The simulations show that the optimal mass of counterweights does not equal the total mass of moving parts of the parallel manipulator, and each counterweight mode has its advantage and disadvantage. Considering the ease in which a counterweight can be implemented, the counterweight mode where two counterweights are connected to two sliders is adopted for the parallel manipulator.


Sign in / Sign up

Export Citation Format

Share Document