Ionization, preionization and internal energy conversion in CO2, COS and CS2 by photoelectron spectroscopy

1968 ◽  
Vol 1 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Jacques E. Collin ◽  
Paul Natalis
Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 976
Author(s):  
Silas Michaelides

In this research, one aspect of the climate that is not commonly referred to, namely, the long-term changes in the components of the atmospheric energy, is investigated. In this respect, the changes in four energy forms are considered, namely, Kinetic Energy (KE), Thermal Energy (TE), Internal Energy (IE), Potential Energy (PE) and Latent Energy (LE); the Energy Conversion (EC) between Kinetic Energy and Potential plus Internal Energy (PIE) is also considered. The area considered in this long-term energetics analysis covers the entire Mediterranean basin, the Middle East and a large part of North Africa. This broad geographical area has been identified by many researchers as a hot spot of climate change. Analyses of climatic data have indeed shown that this region has been experiencing marked changes regarding several climatic variables. The present energetics analysis makes use of the ERA-Interim database for the period from 1979 to 2018. In this 40-year period, the long-term changes in the above energetics components are studied. The monthly means of daily means for all the above energy forms and Energy Conversion comprise the basis for the present research. The results are presented in the form of monthly means, annual means and spatial distributions of the energetics components. They show the dominant role of the subtropical jet-stream in the KE regime. During the study period, the tendency is for KE to decrease with time, with this decrease found to be more coherent in the last decade. The tendency for TE is to increase with time, with this increase being more pronounced in the most recent years, with the maximum in the annual mean in KE noted in 2015. The sum of Potential and Internal energies (PIE) and the sum of Potential, Internal and Latent energies (PILE) follow closely the patterns established for TE. In particular, the strong seasonal influence on the monthly means is evident with minima of PIE and PILE noted in winters, whereas, maxima are registered during summers. In addition, both PIE and PILE exhibit a tendency to increase with time in the 40-year period, with this increase being more firmly noted in the more recent years. Although local conversion from KE into PIE is notable, the area averaging of EC shows that the overall conversion is in the direction of increasing the PIE content of the area at the expense of the KE content. EC behaves rather erratically during the study period, with values ranging from 0.5 to 3.7 × 102 W m−2. Averaged over the study area, the Energy Conversion term operates in the direction of converting KE into PIE; it also lacks a seasonal behavior.


2017 ◽  
Vol 19 (26) ◽  
pp. 17052-17062 ◽  
Author(s):  
José Ojeda ◽  
Christopher A. Arrell ◽  
Luca Longetti ◽  
Majed Chergui ◽  
Jan Helbing

The photophysics of ferricyanide in H2O, D2O and ethylene glycol was studied upon excitation of ligand-to-metal charge transfer (LMCT) transitions by combining ultrafast photoelectron spectroscopy (PES) of liquids and transient vibrational spectroscopy.


Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 271-283 ◽  
Author(s):  
R. Tailleux

Abstract. There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.


2020 ◽  
Vol 8 (12) ◽  
pp. 2000667
Author(s):  
Tongxin Jiang ◽  
Zhiheng Xu ◽  
Caifeng Meng ◽  
Yunpeng Liu ◽  
Xiaobin Tang

Nano Research ◽  
2021 ◽  
Author(s):  
Jacob Johny ◽  
Yao Li ◽  
Marius Kamp ◽  
Oleg Prymak ◽  
Shun-Xing Liang ◽  
...  

AbstractHigh entropy metallic glass nanoparticles (HEMG NPs) are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure. Up until now, the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports, which limited their widespread use. Hence, more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable. We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs. An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation, which were stabilized within graphitic shells. Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy, probably due to the defect generation by atomic size mismatch. Furthermore, we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1371 ◽  
Author(s):  
Zakhar Vakulov ◽  
Evgeny Zamburg ◽  
Daniil Khakhulin ◽  
Andrey Geldash ◽  
Dmitriy A. Golosov ◽  
...  

Energy conversion devices draw much attention due to their effective usage of energy and resulting decrease in CO2 emissions, which slows down the global warming processes. Fabrication of energy conversion devices based on ferroelectric and piezoelectric lead-free films is complicated due to the difficulties associated with insufficient elaboration of growth methods. Most ferroelectric and piezoelectric materials (LiNbO3, BaTiO3, etc.) are multi-component oxides, which significantly complicates their integration with micro- and nanoelectronic technology. This paper reports the effect of the oxygen pressure on the properties of nanocrystalline lithium niobate (LiNbO3) films grown by pulsed laser deposition on SiO2/Si structures. We theoretically investigated the mechanisms of LiNbO3 dissociation at various oxygen pressures. The results of x-ray photoelectron spectroscopy study have shown that conditions for the formation of LiNbO3 films are created only at an oxygen pressure of 1 × 10−2 Torr. At low residual pressure (1 × 10−5 Torr), a lack of oxygen in the formed films leads to the formation of niobium oxide (Nb2O5) clusters. The presented theoretical and experimental results provide an enhanced understanding of the nanocrystalline LiNbO3 films growth with target parameters using pulsed laser deposition for the implementation of piezoelectric and photoelectric energy converters.


2002 ◽  
Vol 28 (2) ◽  
pp. 108-109 ◽  
Author(s):  
M. V. Bliznetsov ◽  
I. G. Zhidov ◽  
E. E. Meshkov ◽  
N. V. Nevmerzhitskii ◽  
E. D. Sen’kovskii ◽  
...  

1991 ◽  
Vol 11 (3-4) ◽  
pp. 131-142 ◽  
Author(s):  
Paul Marie Guyon

The use of synchroton radiation combined with TPEPICO experiments to study the photoionization dynamics of molecules at Orsay's synchroton radiation facility is discussed. The initial state preparation by Threshold Photoelectron Spectroscopy and final state-mass and internal energy spectroscopy by time of flight analysis of photoelectrons as well as ions in coincidence with threshold electrons is illustrated by the TPES of HCl, the TOF TPES of O2 and the TPEPICO spectra of NO+ fragments from the decay of state selected N2O+ ions.


Sign in / Sign up

Export Citation Format

Share Document