Dislocation-crack edge interaction in dynamic brittle fracture and crack propagation

1987 ◽  
Vol 23 (5) ◽  
pp. 607-619 ◽  
Author(s):  
L.M. Brock ◽  
M. Jolles
1979 ◽  
Vol 46 (1) ◽  
pp. 107-112 ◽  
Author(s):  
J. D. Achenbach ◽  
J. G. Harris

Acoustic emissions produced by elementary processes of deformation and fracture at a crack edge are investigated on the basis of elastodynamic ray theory. To obtain a two-dimensional canonical solution we analyze wavefront motions generated by an arbitrary distribution of climbing edge dislocations emanating from the tip of a semi-infinite crack in an unbounded linearly elastic solid. These wavefront results are expressed in terms of emission coefficients which govern the variation with angle, and phase functions which govern the intensity of the wavefront signals. Explicit expressions for the emission coefficients are presented. The coefficients have been plotted versus the angle of observation, for various values of the crack propagation speed. The phase functions are in the form of integrals over the emanating dislocation distributions. Specific dislocation distributions correspond to brittle fracture and plastic yielding at the crack tip, respectively. Acoustic emission is most intense for brittle fracture, when the particle velocities experience wavefront jumps which are proportional to the stress-intensity factors prior to fracture. An appropriate adjustment of the canonical solution accounts for curvature of a crack edge. Such effects as focussing, finite duration of the propagation event, and finite dimensions of the crack are briefly discussed. As a specific example, the first signals generated by brittle Mode I propagation of an elliptical crack are calculated.


2003 ◽  
Vol 805 ◽  
Author(s):  
Frohmut Rösch ◽  
Christoph Rudhart ◽  
Peter Gumbsch ◽  
Hans-Rainer Trebin

ABSTRACTThe propagation of mode I cracks in a three-dimensional icosahedral model quasicrystal has been studied by molecular dynamics techniques. In particular, the dependence on the plane structure and the influence of clusters have been investigated. Crack propagation was simulated in planes perpendicular to five-, two- and pseudo-twofold axes of the binary icosahedral model.Brittle fracture without any crack tip plasticity is observed. The fracture surfaces turn out to be rough on the scale of the clusters. These are not strictly circumvented, but to some extent cut by the dynamic crack. However, compared to the flat seed cracks the clusters are intersected less frequently. Thus the roughness of the crack surfaces can be attributed to the clusters, whereas the constant average heights of the fracture surfaces reflect the plane structure of the quasicrystal. Furthermore a distinct anisotropy with respect to the in-plane propagation direction is found.


Nature ◽  
10.1038/16891 ◽  
1999 ◽  
Vol 397 (6717) ◽  
pp. 333-335 ◽  
Author(s):  
Eran Sharon ◽  
Jay Fineberg

2014 ◽  
Vol 54 (5) ◽  
pp. 1141-1161 ◽  
Author(s):  
Alexander Schlüter ◽  
Adrian Willenbücher ◽  
Charlotte Kuhn ◽  
Ralf Müller

Sign in / Sign up

Export Citation Format

Share Document