The effect of growth rate, size, and season on oocyte development and maturity of Atlantic cod (Gadus morhua L.)

1985 ◽  
Vol 85 (1) ◽  
pp. 3-19 ◽  
Author(s):  
D.A. Holdway ◽  
F.W.H. Beamish
1979 ◽  
Vol 36 (12) ◽  
pp. 1497-1502 ◽  
Author(s):  
L. J. Buckley

The protein, DNA, and RNA content of larvae maintained at 1.0 plankter/mL increased at the rates of 9.3, 9.9, and 9.8% per day, respectively, for the 5 wk after hatching. Protein reserves of larvae held at 0 or 0.2 plankters/mL were depleted by 45 and 35%, respectively, prior to death 12–13 d after hatching. Starved larvae had similar protein concentrations (percent of dry weight), lower RNA concentrations, and higher DNA concentrations than fed larvae. Larvae held at higher plankton densities had higher RNA–DNA ratios and faster growth rates than larvae held at lower plankton densities. The RNA–DNA ratio was significantly correlated (P < 0.01) with the protein growth rate. The RNA–DNA ratio appears to be a useful index of nutritional status in larval Atlantic cod (Gadus morhua) and may be useful for determining if cod larvae were in a period of rapid or slow growth at the time of capture. Key words: RNA–DNA ratio, starvation, protein, nucleic acids, growth, larval fish, Atlantic cod


2019 ◽  
Vol 76 (9) ◽  
pp. 1515-1527 ◽  
Author(s):  
Björn Björnsson

This study supports the hypothesis that well-fed cod (Gadus morhua) seek higher temperatures to increase growth rate, and poorly fed cod select lower temperatures to save metabolic energy. Depth and temperature of free-ranging adult cod (44–79 cm) were studied with data storage tags as part of a ranching project in an Icelandic fjord. Forage fish were regularly provided at four feeding stations where cod formed distinct “herds” (herd cod) that did not mingle much with the rest of the unconditioned cod in the fjord (wild cod). Several parameters (stomach fullness, liver index (fat reserves), condition factor, and growth rate) indicated that food intake was much greater in herd cod than in wild cod. In August, when the thermocline was well established, the herd cod remained in shallow (15–35 m) and warm water (8–10 °C), whereas the wild cod stayed in deep (80–90 m) and cold water (3–4 °C), but occasionally both groups explored depths and temperatures outside their preferred range. After vertical mixing in autumn when thermoregulation was not possible, the depth difference between the two groups decreased significantly.


Evolution ◽  
1998 ◽  
Vol 52 (3) ◽  
pp. 915-920 ◽  
Author(s):  
Grant H. Pogson ◽  
Svein Erik Fevolden

1999 ◽  
Vol 56 (9) ◽  
pp. 1612-1623 ◽  
Author(s):  
Jeffrey A Hutchings

A stochastic, age-structured life history model was used to examine how age at maturity (theta), pre- (Zimm) and postreproductive (Zmat) mortality, and postreproductive growth rate can affect maximum reproductive rates of fish at low population size. Simulations suggest that annual (r) and per-generation (R0) metrics of population growth for Newfoundland's northern Grand Bank Atlantic cod, Gadus morhua, are primarily influenced by changes to mortality prior to and following reproduction. At observed weights at age and Zmat = 0.2, r ranged between 0.135 and 0.164 for cod maturing at between 4 and 7 years. Incremental increases in either Zimm or Zmat of 0.1 were associated with 0.03-0.05 reductions in r. To effect similar reductions, individual growth rate would have to decline by approximately one half. At observed weights at age, increases in Zmat from 0.20 to 0.45 increased the probability of negative per-generation growth from 3 to 26% for cod maturing at 4 years and from 6 to 46% for cod maturing at 7 years. Thus, even in the absence of fishing mortality, little or no population growth by Atlantic cod may not be unexpected in the presence of environmental stochasticity, particularly when accompanied by increases in mortality and declining individual growth.


2004 ◽  
Vol 61 (6) ◽  
pp. 983-991 ◽  
Author(s):  
Björn Björnsson ◽  
Maria Álvaro Dongala Dombaxe

Abstract Nephrops was found to be of low quality as food for cod. In a laboratory experiment the mean specific growth rate of 1 kg cod was 0.184 and 0.415% d−1 when fed to satiation on Nephrops and capelin, respectively. This large difference in growth rate resulted not only from less intake of Nephrops (1.19 kg cod−1) than capelin (1.55 kg cod−1) but also because more Nephrops (4.6 kg) than capelin (2.2 kg) were required to produce each kilogramme of cod. Higher food conversion ratio was consistent with lower fat content of Nephrops (1.3%) than capelin (9.2%) but the exoskeleton also reduced the digestion rate of Nephrops. In the groups where Nephrops and capelin of equal mean weight were offered simultaneously, 40% of the diet consisted of Nephrops during the first week and 10% during the final seven weeks of the experiment. At the end of the experiment, condition factor, liver index, and gonadosomatic index were significantly lower for cod fed on Nephrops (0.967, 5.7, 7.1, respectively) than for those fed on capelin (1.086, 15.8, 11.2, respectively). These results suggests that predation by cod on Nephrops might be reduced by regular release of capelin or other similar food in the distributional areas of Nephrops.


1994 ◽  
Vol 51 (7) ◽  
pp. 1569-1576 ◽  
Author(s):  
Yvan Lambert ◽  
Jean-Denis Dutil ◽  
Jean Munro

Growth rates of Atlantic cod (Gadus morhua) were measured under different salinity conditions to test the hypothesis that growth would be best in an isosmotic environment. The results of two experiments (spring and autumn 1991) conducted at three different salinities (7, 14, and 28‰) and two feeding regimes indicate a significant effect of salinity and ration on growth rate. Within each experiment, growth rates were highest for cod maintained in intermediate salinity conditions (14‰). Growth rates in low salinity conditions (7‰) were higher than in seawater (28‰) during the spring, but during the autumn, growth rates of cod held under low salinity conditions and in seawater were similar. Higher growth rates at lower salinities resulted from an increase in food conversion efficiency. They were not associated with an increase in food intake, changes in composition (proteins, lipids, or water), or relative allocation of energy to the tissues (muscle, liver, and gonads) of cod. The results indicate that rearing cod at intermediate salinities, such as would occur in estuaries or coastal regions, could confer an advantage for cod aquaculture.


Aquaculture ◽  
2007 ◽  
Vol 271 (1-4) ◽  
pp. 216-226 ◽  
Author(s):  
Björn Björnsson ◽  
Agnar Steinarsson ◽  
Tómas Árnason

2019 ◽  
Vol 77 (2) ◽  
pp. 624-632 ◽  
Author(s):  
Stefan Neuenfeldt ◽  
Valerio Bartolino ◽  
Alessandro Orio ◽  
Ken H Andersen ◽  
Niels G Andersen ◽  
...  

Abstract Five decades of stomach content data allowed insight into the development of consumption, diet composition, and resulting somatic growth of Gadus morhua (Atlantic cod) in the eastern Baltic Sea. We show a recent reversal in feeding level over body length. Present feeding levels of small cod indicate severe growth limitation and increased starvation-related mortality. For young cod, the low growth rate and the high mortality rate are manifested through a reduction in size-at-age. The low feeding levels are likely the result of a decrease in benthic prey abundance due to increased hypoxic areas, while decreasing abundances of pelagic species in the area of cod distribution have prevented a compensatory shift in diet. Our study emphasizes that environmental forcing and the decline in pelagic prey caused changes in consumption and growth rates of small cod. The food reduction is amplified by stunted growth leading to high densities of cod of smaller size competing for the scarce resources. The average growth rate is negative, and only individuals with feeding levels well above average will survive, though growing slowly. These results suggest that the relation between consumption rate, somatic growth and predatorprey population densities is strongly environmentally mediated.


1989 ◽  
Vol 46 (11) ◽  
pp. 1884-1894 ◽  
Author(s):  
Richard L. Radtke

External and internal examination of Atlantic cod (Gadus morhua) otoliths for macrostructure and microstructure, by light and scanning electron microscopy, indicated daily rhythmic patterns. The first daily increment developed the day after hatching. Sagittae changed shape from spherical to oblong at 20 d and to crenulated at 50−60 d old. Cod were reared at three temperatures (6,8 and 10 °C), to provide a range of growth and developmental rates. Distinctive marks formed at yolk-sac absorption, initiation of feeding and settlement. It was possible to determine age and growth rate from otolith analyses. The relationship between otolith length and fish size was independent of growth rate; it followed a quadratic function for the smaller individuals (< 6.5 mm), and it was linear in individuals greater than 25 mm. Larval fish shrank considerably at death. The magnitude of shrinkage was dependent on larval length, and the elapsed time between death and fixation. Immediate fixation in ethanol resulted in minimal shrinkage. The relationship between fish length and otolith diameter may be used to correct for shrinkage associated with collection and death.


1998 ◽  
Vol 55 (7) ◽  
pp. 1591-1598 ◽  
Author(s):  
Patrice Couture ◽  
Jean-Denis Dutil ◽  
Helga Guderley

The aim of this study was to examine how the biochemical composition of tissues varied with growth rate and condition in juvenile Atlantic cod (Gadus morhua) caught in the wild and kept in captivity. The hepatosomatic index, brain water content, and muscle sarcoplasmic protein content as well as the activities of phosphofructokinase, lactate dehydrogenase, nucleoside diphosphate kinase, and citrate synthase in the muscle, nucleoside diphosphate kinase and citrate synthase in the intestine, and cytochrome c oxidase and citrate synthase in the brain increased with growth rate or condition factor. Conversely, liver and muscle water contents were lower in fish with a higher growth rate. A multiple regression model that included the hepatosomatic index, water content of muscle and brain, and citrate synthase activity in the intestine explained 79.7% of the variability of growth in mass under our conditions. A similar model, using liver water content instead of muscle water content, explained 82.5% of the variability of growth in length. These easy to measure variables may be used in fisheries management to estimate the growth rate of fish in the wild.


Sign in / Sign up

Export Citation Format

Share Document