Depth profiling in the near surface region by low energy PIXE

1982 ◽  
Vol 196 (2-3) ◽  
pp. 483-487 ◽  
Author(s):  
olker Rössiger
1987 ◽  
Vol 104 ◽  
Author(s):  
A. E. Jaworowski ◽  
L. S. Wielunski

ABSTRACTThe hydrogen depth profiling in the near-surface region in silicon reveals the existence of a subsurface hydrogen layer. This layer acts as a barrier to diffusion. The observed subsurface hydrogen profile rises and then drops off sharply with increasing depth and is stable up to 770 K. Our annealing data indicate a rather complex motion of monatomic and molecular hydrogen in the near-surface region (<1500 A) in the temperature range 300 – 800 K. The subsurface molecule formation represents the dominant hydrogen trapping process in silicon.


1995 ◽  
Vol 396 ◽  
Author(s):  
W.F. Seng ◽  
P.A. Barnes ◽  
M.L. Lovejoy ◽  
L.P. Fu ◽  
G.D. Gilliland ◽  
...  

AbstractLow energy neutral Ar ion-beam etching of n-GaAs was investigated as a possible “cleaning” procedure prior to contact metallization. The ion-beam source energy was varied between 35 eV and 1200 eV at a fixed current density of 1 mA/cm2. The effects of ion-milling on lightly doped n-GaAs were analyzed electrically by measuring current-voltage (IV) and capacitance-voltage (CV) characteristics of Schottky barriers formed after the ion-milling. The metal semiconductor barriers were prepared immediately following ion-milling without breaking vacuum. Photoluminescence and Rutherford Backscattering (RBS) were used to determine if any physical modification of the surface and near surface region of the ion-milled substrates had occurred.


2021 ◽  
Vol 264 ◽  
pp. 05037
Author(s):  
Ilkhom Bekpulatov ◽  
Ilkhom Turapov ◽  
Sevara Abraeva ◽  
Jakhongir Normuminov

Using the methods of electron spectroscopy and slow electron diffraction, we studied the processes of the formation of nanosized metal silicide films in the near-surface region of Si (111) and Si (100) during low-energy implantation of Ba ions and alkaline elements. The optimal technological modes of ion implantation and subsequent annealing for the formation of thin nanoscale films of silicides were determined. The type of surface superstructures of thin silicide films has been established.


Vacuum ◽  
1993 ◽  
Vol 44 (3-4) ◽  
pp. 185-190 ◽  
Author(s):  
WH Schulte ◽  
H Ebbing ◽  
HW Becker ◽  
M Berheide ◽  
M Buschmann ◽  
...  

1981 ◽  
Vol 11 ◽  
Author(s):  
Patrick Trocellier ◽  
Bernard Nens ◽  
Charles Engelmann

The Rutherford backscattering technique is useful for the determination of the concentration profiles of some heavy elements in the near surface region of glasses, but is not able to provide chemical information on the elements detected.


2003 ◽  
Vol 18 (1) ◽  
pp. 173-179 ◽  
Author(s):  
Maxim B. Kelman ◽  
Paul C. McIntyre ◽  
Bryan C. Hendrix ◽  
Steven M. Bilodeau ◽  
Jeffrey F. Roeder ◽  
...  

Structural properties of polycrystalline Pb(Zr0.35Ti0.65)O3 (PZT) thin films grown by metalorganic chemical vapor deposition on Ir bottom electrodes were investigated. Symmetric x-ray diffraction measurements showed that as-deposited 1500 íthick PZT films are partially tetragonal and partially rhombohedral. Cross-section scanning electron microscopy showed that these films have a polycrystalline columnar microstructure with grains extending through the thickness of the film. X-ray depth profiling using the grazing-incidence asymmetric Bragg scattering geometry suggests that each grain has a bilayer structure consisting of a near-surface region in the etragonal phase and the region at the bottom electrode interface in the rhombohedral hase. The required compatibility between the tetragonal and rhombohedral phases in he proposed layered structure of the 1500 Å PZT can explain the peak shifts observed n the symmetric x-ray diffraction results of thicker PZT films.


2008 ◽  
Vol 255 (4) ◽  
pp. 1320-1322 ◽  
Author(s):  
Y. Tada ◽  
K. Suzuki ◽  
Y. Kataoka

Sign in / Sign up

Export Citation Format

Share Document