scholarly journals Optimum technological modes of ion implantation and subsequent annealing for formation of thin nanosized silicide films

2021 ◽  
Vol 264 ◽  
pp. 05037
Author(s):  
Ilkhom Bekpulatov ◽  
Ilkhom Turapov ◽  
Sevara Abraeva ◽  
Jakhongir Normuminov

Using the methods of electron spectroscopy and slow electron diffraction, we studied the processes of the formation of nanosized metal silicide films in the near-surface region of Si (111) and Si (100) during low-energy implantation of Ba ions and alkaline elements. The optimal technological modes of ion implantation and subsequent annealing for the formation of thin nanoscale films of silicides were determined. The type of surface superstructures of thin silicide films has been established.

Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 427 ◽  
Author(s):  
Jie Jin ◽  
Wei Wang ◽  
Xinchun Chen

In this study, Ti + N ion implantation was used as a surface modification method for surface hardening and friction-reducing properties of Cronidur30 bearing steel. The structural modification and newly-formed ceramic phases induced by the ion implantation processes were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and grazing incidence X-ray diffraction (GIXRD). The mechanical properties of the samples were tested by nanoindentation and friction experiments. The surface nanohardness was also improved significantly, changing from ~10.5 GPa (pristine substrate) to ~14.2 GPa (Ti + N implanted sample). The friction coefficient of Ti + N ion implanted samples was greatly reduced before failure, which is less than one third of pristine samples. Furthermore, the TEM analyses confirmed a trilamellar structure at the near-surface region, in which amorphous/ceramic nanocrystalline phases were embedded into the implanted layers. The combined structural modification and hardening ceramic phases played a crucial role in improving surface properties, and the variations in these two factors determined the differences in the mechanical properties of the samples.


1983 ◽  
Vol 24 ◽  
Author(s):  
C. W. White ◽  
G. C. Farlow ◽  
H. Naramoto ◽  
C. J. Mchargue ◽  
B. R. Appleton

ABSTRACTPhysical and structural property changes resulting from ion implantation and thermal annealing of α-A12O3 are reviewed. Emphasis is placed on damage production during implantation, damage recovery during thermal annealing, and impurity incorporation during thermal annealing. Physical and structural property changes caused by ion implantation and annealing are correlated with changes in the mechanical properties.


1992 ◽  
Vol 262 ◽  
Author(s):  
G. -S. Lee ◽  
J. -G. Park ◽  
S. -P. Choi ◽  
C. -H. Shin ◽  
Y. -B. Sun ◽  
...  

ABSTRACTIn this study, using oxide breakdown voltage and time-dependent-dielectric breakdown measurements, thermal wave modulated reflectance and chemical etching/optical microscopy, we investigated effects of Si ion implantation upon formation of D-defects and thin gate oxide integrity. Our data show that addition of Si ion implantation with a dose of up to 1013 ions/cm2 improves oxide integrity if the implantation is done at a certain step just before sacrificial oxidation in the Mb DRAM process. However, no improvement in oxide integrity is observed when the same implantation is done on the virgin wafer surfaces at the start of the same Mb DRAM process. We discuss our hypothesis that the improvement in oxide integrity is due to a reduction in the D-defect density in the near-surface region of the wafer.


Sign in / Sign up

Export Citation Format

Share Document