Evidence for a Holocene High Sea-Level Stand, Vanua Levu, Fiji

1990 ◽  
Vol 33 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Takao Miyata ◽  
Yasuo Maeda ◽  
Eiji Matsumoto ◽  
Yoshiaki Matsushima ◽  
Peter Rodda ◽  
...  

AbstractTwo distinct elevations of emerged notches can be recognized on the southeastern coast of Vanua Levu: the higher notch is +2.22 to +3.30 m above low-tide level and the lower +1.52 to +1.65 m above low-tide level. Many emerged Holocene corals encrust higher notch floors and benches or occur as microatolls and from these radiocarbon ages ranging from 6000 to 3400 yr B.P. were obtained. The higher notches are significantly higher than present high-tide level, even allowing for relative tectonic uplift. This is supported by elevations of emerged microatolls and their 14C ages. Thus, mean sea level of the mid-Holocene was higher than that at present.

2020 ◽  
Vol 8 (12) ◽  
pp. 1024
Author(s):  
Masaki Nimura ◽  
Shuzo Nishida ◽  
Koji Kawasaki ◽  
Tomokazu Murakami ◽  
Shinya Shimokawa

Global warming is feared to cause sea-level rise and intensification of typhoons, and these changes will lead to an increase in storm surge levels. For that reason, it is essential to predict the inundation areas for the maximum potential typhoon and evaluate the disaster mitigation effect of seawalls. In this study, we analyzed storm surge inundation of the inner part of Ise Bay (coast of Aichi and Mie Prefecture, Japan) due to the maximum potential typhoon in the future climate with global warming. In the analysis, a high-resolution topographical model was constructed considering buildings’ shape and arrangement and investigated the inundation process inside the seawall in detail. The results showed that buildings strongly influence the storm surge inundation process inside the seawall, and a high-velocity current is generated in some areas. It is also found that closing the seawall door delays the inundation inside the seawall, but the evacuation after inundation is more difficult under the seawall doors closed condition than opened condition when the high tide level exceeds the seawall.


Author(s):  
M. Hernández ◽  
C. A. Martínez ◽  
O. Marzo

Abstract. The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 324 ◽  
Author(s):  
Jianlong Feng ◽  
Delei Li ◽  
Hui Wang ◽  
Qiulin Liu ◽  
Jianli Zhang ◽  
...  

Using hourly sea level data from four tide gauges, the changes of the extreme sea level in the Bohai Sea were analyzed in this work. Three components (i.e., mean sea level, tide and surge) as well as the tide–surge interaction were studied to find which component was important in the changes of extreme sea levels. Significant increasing trends exist in the mean sea level at four tide gauges from 1980 to 2016, and the increase rate ranges from 0.2 to 0.5 cm/year. The mean high tide levels show positive trends at four tide gauges, and the increasing rate (0.1 to 0.3 cm/year) is not small compared with the long-term trends of the mean sea levels. However, the mean tidal ranges show negative trends at Longkou, Qinhuangdao and Tanggu, with the rate from about −0.7 to −0.2 cm/year. At Qinhuangdao and Tanggu, the annual surge intensity shows explicit long-term decreasing trend. At all four tide gauges, the storm surge intensity shows distinct inter-annual variability and decadal variability. All four tide gauges show significant tide–surge interaction, the characteristics of the tide–surge interaction differ due to their locations, and no clear long-term change was found. Convincing evidence implies that the extreme sea levels increase during the past decades from 1980 to 2016 at all tide gauges, with the increasing rate differing at different percentile levels. The extreme sea level changes in the Bohai Sea are highly affected by the changes of mean sea level and high tide level, especially the latter. The surge variation contributes to the changes of extreme sea level at locations where the tide–surge interaction is relatively weak.


2020 ◽  
Vol 15 (3) ◽  
pp. 723-733
Author(s):  
A. Figueiredo ◽  
L. Amaral ◽  
J. Pacheco

Abstract Salt water from the Tagus Estuary has been identified in the influent at Barreiro/Moita Wastewater Treatment Plant (WWTP), Portugal. The saltwater intrusion occurs during high tide levels in the estuary throughout damaged sections and direct vectors in the sewer network, changing the wastewater characteristics impacting the WWTP processes. This work has designed a methodology to assess from which tide level in the Tagus Estuary saltwater intrusion occurs in the sewer network by measuring WWTP influent's electric conductivity (EC). The methodology identifies saltwater intrusion for tide levels higher than 3.10 m, increasing significantly for tide levels higher than 4.00 m. During this study, 86% of the days registered at least one high tide level higher than 3.10 m, and 8% higher than 4.00 m, demonstrating a considerable occurrence of saltwater intrusion in the system with a tendency to increase due to the mean sea level rise registered in the Tagus Estuary. To prevent it, it is necessary to map infrastructures and assess the most critical points.


2016 ◽  
Vol 91 (1) ◽  
pp. 69-90 ◽  
Author(s):  
P. L. Woodworth
Keyword(s):  

1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


2020 ◽  
Author(s):  
Martina Rogers ◽  
◽  
Michael C. Sukop ◽  
Jayantha Obeysekera ◽  
Florence George ◽  
...  

2015 ◽  
Vol 15 (11) ◽  
pp. 2557-2568 ◽  
Author(s):  
M. Wronna ◽  
R. Omira ◽  
M. A. Baptista

Abstract. In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamish Steptoe ◽  
Nicholas Henry Savage ◽  
Saeed Sadri ◽  
Kate Salmon ◽  
Zubair Maalick ◽  
...  

AbstractHigh resolution simulations at 4.4 km and 1.5 km resolution have been performed for 12 historical tropical cyclones impacting Bangladesh. We use the European Centre for Medium-Range Weather Forecasting 5th generation Re-Analysis (ERA5) to provide a 9-member ensemble of initial and boundary conditions for the regional configuration of the Met Office Unified Model. The simulations are compared to the original ERA5 data and the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone database for wind speed, gust speed and mean sea-level pressure. The 4.4 km simulations show a typical increase in peak gust speed of 41 to 118 knots relative to ERA5, and a deepening of minimum mean sea-level pressure of up to −27 hPa, relative to ERA5 and IBTrACS data. The downscaled simulations compare more favourably with IBTrACS data than the ERA5 data suggesting tropical cyclone hazards in the ERA5 deterministic output may be underestimated. The dataset is freely available from 10.5281/zenodo.3600201.


Sign in / Sign up

Export Citation Format

Share Document