Self-consistent numerical solutions of p-type inversion layers in silicon mos devices

1976 ◽  
Vol 18 (8) ◽  
pp. 1021-1023 ◽  
Author(s):  
N. Garcia
1996 ◽  
Vol 154 ◽  
pp. 149-153
Author(s):  
S. T. Wu ◽  
A. H. Wang ◽  
W. P. Guo

AbstractWe discuss the self-consistent time-dependent numerical boundary conditions on the basis of theory of characteristics for magnetohydrodynamics (MHD) simulations of solar plasma flows. The importance of using self-consistent boundary conditions is demonstrated by using an example of modeling coronal dynamic structures. This example demonstrates that the self-consistent boundary conditions assure the correctness of the numerical solutions. Otherwise, erroneous numerical solutions will appear.


Author(s):  
Vladimir Kolobov ◽  
Juan Alonso Guzmán ◽  
R R Arslanbekov

Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures.


2006 ◽  
Vol 527-529 ◽  
pp. 1007-1010 ◽  
Author(s):  
Daniel B. Habersat ◽  
Aivars J. Lelis ◽  
G. Lopez ◽  
J.M. McGarrity ◽  
F. Barry McLean

We have investigated the distribution of oxide traps and interface traps in 4H Silicon Carbide MOS devices. The density of interface traps, Dit, was characterized using standard C-V techniques on capacitors and charge pumping on MOSFETs. The number of oxide traps, NOT, was then calculated by measuring the flatband voltage VFB in p-type MOS capacitors. The amount that the measured flatband voltage shifts from ideal, minus the contributions due to the number of filled interface traps Nit, gives an estimate for the number of oxide charges present. We found Dit to be in the low 1011cm−2eV−1 range in midgap and approaching 1012 −1013cm−2eV−1 near the band edges. This corresponds to an Nit of roughly 2.5 ⋅1011cm−2 for a typical capacitor in flatband at room temperature. This data combined with measurements of VFB indicates the presence of roughly 1.3 ⋅1012cm−2 positive NOT charges in the oxide near the interface for our samples.


2004 ◽  
Vol 30 (11) ◽  
pp. 871-873
Author(s):  
G. A. Alshanskiı̆ ◽  
M. V. Yakunin

In this paper the viscoelastic creep compliances of various composites are estimated by the self-consistent method. The phases may be arbitrarily anisotropic and in any concentrations but we demand that one of the phases be a matrix and the remaining phases consist of ellipsoidal inclusions. The theory is succinctly formulated with the help of Stieltjes convolutions. In order to solve the title problem, we first solve the misfitting viscoelastic inclusion problem. Numerical solutions are given for a selection of inclusion problems and for two common composite materials, namely an isotropic dispersion of spheres, and a uni-directional fibre reinforced material.


Sign in / Sign up

Export Citation Format

Share Document