Self-organized criticality near the bean critical state: A power-law behavior of flux motion

1994 ◽  
Vol 90 (6) ◽  
pp. 405-408 ◽  
Author(s):  
Zuning Wang ◽  
Donglu Shi
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Andrey Dmitriev ◽  
Victor Dmitriev ◽  
Stepan Balybin

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network. The model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.


2018 ◽  
Vol 618 ◽  
pp. A183
Author(s):  
A. Shapoval ◽  
J.-L. Le Mouël ◽  
M. Shnirman ◽  
V. Courtillot

Context. The hypothesis stating that the distribution of sunspot groups versus their size (φ) follows a power law in the domain of small groups was recently highlighted but rejected in favor of a Weibull distribution. Aims. In this paper we reconsider this question, and are led to the opposite conclusion. Methods. We have suggested a new definition of group size, namely the spatio-temporal “volume” (V) obtained as the sum of the observed daily areas instead of a single area associated with each group. Results. With this new definition of “size”, the width of the power-law part of the distribution φ ∼ 1/Vβ increases from 1.5 to 2.5 orders of magnitude. The exponent β is close to 1. The width of the power-law part and its exponent are stable with respect to the different catalogs and computational procedures used to reduce errors in the data. The observed distribution is not fit adequately by a Weibull distribution. Conclusions. The existence of a wide 1/V part of the distribution φ suggests that self-organized criticality underlies the generation and evolution of sunspot groups and that the mechanism responsible for it is scale-free over a large range of sizes.


1995 ◽  
Vol 50 (9-10) ◽  
pp. 739-740 ◽  
Author(s):  
Peter Babinec ◽  
Melánia Babincová

Abstract We have shown that the distribution of lengths of site nucleated microtubules obey an algebraic power law relationship D(s) = As-τ, where D(s) is relative number of microtubules with length 5, A and τ are constants. This relationship indicates the possibility of a self-organized criticality in the dynamic instability of microtubule growth


2000 ◽  
Vol 11 (06) ◽  
pp. 1257-1262 ◽  
Author(s):  
COLIN CHISHOLM ◽  
NAEEM JAN ◽  
PETER GIBBS ◽  
AYŞE ERZAN

Recent work has shown that the distribution of steady state mutations for an asexual "bacteria" model has features similar to that seen in Self-Organized Critical (SOC) sandpile model of Bak et al. We investigate this coincidence further and search for "self-organized critical" state for bacteria but instead find that the SOC sandpile critical behavior is very sensitive; critical behavior is destroyed with small perturbations effectively when the absorption of sand is introduced. It is only in the limit when the length of the genome of the bacteria tends to infinity that SOC properties are recovered for the asexual model.


1996 ◽  
Vol 458 ◽  
Author(s):  
G. Kendall ◽  
P. J. Cote ◽  
D. Crayon ◽  
F. J. Bonetto

ABSTRACTAcoustic emission (AE) events were recorded during the peeling of pressure-sensitive adhesive (PSA) tape from a silicate glass surface. The distributions of AE event durations and energies are found to have the form of power laws. Power-law dependencies (hyperbolic distributions) are recognized as a consequence of self-organized criticality (SOC), resulting from the absence of any characteristic length or time scales. In these studies, standard optical microscopy was used to characterize the fractal nature of the PSA-glass interface. The present results suggest that it is the inherent static structural features found at the fractal PSA-glass interface which produce the observed hyperbolic distributions in AE events, rather than a true SOC process.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 934-937 ◽  
Author(s):  
PAUL J. COTE ◽  
LAWRENCE V. MEISEL

An investigation of the possibility that the Barkhausen effect in amorphous and polycrystalline ferromagnets is an example of self-organized criticality is described. Since the theory of self-organized criticality was introduced by Bak, Tang, and Weisenfeld to explain the behavior of spatially extended, dissipative, dynamical systems the Barkhausen effect is a natural candidate for such a description. The data are consistent with self-organized critical behavior: the power spectral densities depend on frequency f as 1/fa and the distribution of pulse energies are well described by a power law analogous to the Gutenberg-Richter law for earthquakes. Alternative explanations for power law dependences are also presented.


1999 ◽  
Vol 09 (12) ◽  
pp. 2249-2255 ◽  
Author(s):  
S. HAINZL ◽  
G. ZÖLLER ◽  
J. KURTHS

We introduce a crust relaxation process in a continuous cellular automaton version of the Burridge–Knopoff model. Analogously to the original model, our model displays a robust power law distribution of event sizes (Gutenberg–Richter law). The principal new result obtained with our model is the spatiotemporal clustering of events exhibiting several characteristics of earthquakes in nature. Large events are accompanied by a precursory quiescence and by localized fore- and aftershocks. The increase of foreshock activity as well as the decrease of aftershock activity follows a power law (Omori law) with similar exponents p and q. All empirically observed power law exponents, the Richter B-value, p and q and their variability can be reproduced simultaneously by our model, which depends mainly on the level of conservation and the relaxation time.


Author(s):  
Ian G. Main ◽  
Mark Naylor

We derive an analytical expression for entropy production in earthquake populations based on Dewar’s formulation, including flux (tectonic forcing) and source (earthquake population) terms, and apply it to the Olami–Feder–Christensen numerical model for earthquake dynamics. Assuming the commonly observed power-law rheology between driving stress and remote strain rate, we test the hypothesis that maximum entropy production (MEP) is a thermodynamic driver for self-organized ‘criticality’ (SOC) in the model. MEP occurs when the global elastic strain is near-critical, with small relative fluctuations in macroscopic strain energy expressed by a low seismic efficiency, and broad-bandwidth power-law scaling of frequency and rupture area. These phenomena, all as observed in natural earthquake populations, are hallmarks of the broad conceptual definition of SOC (which has, to date, often included self-organizing systems in a near but strictly subcritical state). In the MEP state, the strain field retains some memory of past events, expressed as coherent ‘domains’, implying a degree of predictability, albeit strongly limited in practice by the proximity to criticality and our inability to map the natural stress field at an equivalent resolution to the numerical model.


2008 ◽  
Vol 19 (07) ◽  
pp. 1063-1067 ◽  
Author(s):  
F. W. S. LIMA

On directed and undirected Barabási–Albert networks the Ising model with spin S = 1/2 in the presence of a kind of noise is now studied through Monte Carlo simulations. The noise spectrum P(n) follows a power law, where P(n) is the probability of flipping randomly select n spins at each time step. The noise spectrum P(n) is introduced to mimic the self-organized criticality as a model influence of a complex environment. In this model, different from the square lattice, the order-disorder phase transition of the order parameter is not observed. For directed Barabási–Albert networks the magnetisation tends to zero exponentially and undirected Barabási–Albert networks remain constant.


Sign in / Sign up

Export Citation Format

Share Document