Time-resolved photoluminescence studies of stimulated emission and exciton dynamics in ZnSe/ZnS0.18Se0.82 superlattices

1994 ◽  
Vol 37 (4-6) ◽  
pp. 1133-1136
Author(s):  
C.J. Stevens ◽  
R.A. Taylor ◽  
J.F. Ryan ◽  
M. Dabbicco ◽  
M. Ferrara ◽  
...  
1996 ◽  
Vol 449 ◽  
Author(s):  
A. Hangleiter ◽  
F. Scholz ◽  
V. Härle ◽  
J. S. Im ◽  
G. Frankowsky

ABSTRACTBoth spontaneous and stimulated emission processes are essential ingredients for constructing a laser from the nitrides. Based on our picosecond time-resolved photoluminescence studies we show that spontaneous radiative recombination is strongly influenced by excitonic effects, both in bulk GaN and in quantum wells. Particularly in quantum wells, localization of excitons plays an important role. We have studied the optical gain spectra in GaInN/GaN and GaN/AlGaN double heterostructures and quantum wells, grown by LP-MOVPE, using the stripe excitation method. Both room temperature and low temperature measurements were performed. Based on our results, we discuss the physical mechanism of optical gain in the nitrides as well as consequences for laser operation. We show that localization or, equivalently, the formation of quantum dot like structures, governs the optical gain mechanism in the nitrides.


Nanoscale ◽  
2015 ◽  
Vol 7 (16) ◽  
pp. 7402-7408 ◽  
Author(s):  
Long Yuan ◽  
Libai Huang

We systematically investigate the exciton dynamics in monolayered, bilayered, and trilayered WS2 two-dimensional (2D) crystals by time-resolved photoluminescence (TRPL) spectroscopy.


2005 ◽  
Vol 87 (9) ◽  
pp. 093108 ◽  
Author(s):  
W. M. Kwok ◽  
A. B. Djurišić ◽  
Y. H. Leung ◽  
W. K. Chan ◽  
D. L. Phillips

2007 ◽  
Vol 17 (01) ◽  
pp. 179-188 ◽  
Author(s):  
MICHAEL WRABACK ◽  
GREGORY A. GARRETT ◽  
ANAND V. SAMPATH ◽  
PAUL H. SHEN

Time-resolved photoluminescence studies of nitride semiconductors and ultraviolet light emitters comprised of these materials are performed as a function of pump intensity as a means of understanding and evaluating device performance. Comparison of time-resolved photoluminescence (TRPL) on UV LED wafers prior to fabrication with subsequent device testing indicate that the best performance is attained from active regions that exhibit both reduced nonradiative recombination due to saturation of traps associated with point and extended defects and concomitant lowering of radiative lifetime with increasing carrier density. Similar behavior is observed in optically pumped UV lasers. Temperature and intensity dependent TRPL measurements on a new material, AlGaN containing nanoscale compositional inhomogeneities (NCI), show that it inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region.


Sign in / Sign up

Export Citation Format

Share Document