Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems

1988 ◽  
Vol 22 (5) ◽  
pp. 565-570 ◽  
Author(s):  
Viswanath Arun ◽  
Takashi Mino™ ◽  
Tomonori Matsuo™
2002 ◽  
Vol 46 (1-2) ◽  
pp. 191-194 ◽  
Author(s):  
L.-M. Whang ◽  
J.K. Park

This study demonstrated that temperature is an important factor in determining the outcome of competition between polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating non-poly-P organisms (GAOs) and the resultant stability of enhanced biological phosphorus removal (EBPR) systems. At 20°C and a 10-day sludge age, PAOs were dominant in the anaerobic/aerobic (A/O) SBR, however, at 30°C and a 10-day sludge age, GAOs were dominant in the A/O SBR. For kinetic batch studies, the anaerobic specific acetate uptake rate of GAO-dominated sludge (1.34 × 10−3 mg C/mg VSS·minute) was higher than the rate of PAO-dominated sludge (0.89 × 10−3 mg C/mg VSS·minute) at 30°C, leading to the eventual failure of EBPR processes at high temperatures.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 171-178 ◽  
Author(s):  
A.J. Schuler ◽  
D. Jenkins

Laboratory-scale sequencing batch reactors exhibiting enhanced biological phosphorus removal were analyzed for pH effects on anaerobic phosphorus (P) release, glycogen degradation, and acetate uptake. Samples with non-soluble P/total suspended solids values of either 0.13-0.14 mg/mg (HP) or 0.065-0.075 mg/mg (LP) were analyzed in anaerobic batch tests with excess acetate addition at pH values ranging from 5.2 to 9.5. A polyphosphate-accumulating metabolism (PAM) had a competitive advantage over a glycogen-accumulating metabolism (GAM) at pH > 7.0. Maximum acetate uptake rates by the HP and LP samples occurred at pH values 8.0 and 6.9, respectively. Anaerobic P release/acetate uptake increased with increasing pH at rates similar to previously reported values. Glycogen degradation/acetate uptake decreased with increasing pH above pH 7, which disagreed with previous reports that glycogen degradation/acetate increased or was unaffected by increasing pH. The results suggested that the acetate uptake mechanisms of GAM and PAM may be different.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 541-547 ◽  
Author(s):  
Damir Brdjanovic ◽  
Mark C. M. van Loosdrecht ◽  
Christine M. Hooijmans ◽  
Takashi Mino ◽  
Guy J. Alaerts ◽  
...  

Glycogen plays an important role in biological phosphorus removal from wastewaters. Existing measurement techniques often overestimate the glycogen content of the biomass due to the presence of glucose and/or other carbohydrates than glycogen in the cell material. As an alternative to conventional methods a bioassay for glycogen determination in biological phosphorus removal systems was developed. The bioassay is based on the strict stoichiometric coupling between anaerobic acetate uptake and glycogen consumption. In other words, the glycogen concentration of the sludge was determined indirectly by measuring the maximal total acetate uptake by the activated sludge in anaerobic batch tests. The bioassay was successfully tested for the determination of glycogen content of the sludge taken from the lab-scale, acetate-fed, anaerobic-aerobic-settling sequencing batch reactor operating at pH 7±0.1 and temperature of 20°C. This determination of glycogen requires that glycogen (not poly-P) is the limiting factor for anaerobic acetate uptake. A method to verify this assumption based on the effect of pH on phosphate/acetate ratio is proposed and used. The bioassay is easy to apply and gives a direct measure of the glycogen content of bio-P bacteria, but its reliability still needs to be verified at full-scale biological P-removal plants.


2006 ◽  
Vol 41 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Zhe Zhang ◽  
Eric R. Hall

Abstract Parameter estimation and wastewater characterization are crucial for modelling of the membrane enhanced biological phosphorus removal (MEBPR) process. Prior to determining the values of a subset of kinetic and stoichiometric parameters used in ASM No. 2 (ASM2), the carbon, nitrogen and phosphorus fractions of influent wastewater at the University of British Columbia (UBC) pilot plant were characterized. It was found that the UBC wastewater contained fractions of volatile acids (SA), readily fermentable biodegradable COD (SF) and slowly biodegradable COD (XS) that fell within the ASM2 default value ranges. The contents of soluble inert COD (SI) and particulate inert COD (XI) were somewhat higher than ASM2 default values. Mixed liquor samples from pilot-scale MEBPR and conventional enhanced biological phosphorus removal (CEBPR) processes operated under parallel conditions, were then analyzed experimentally to assess the impact of operation in a membrane-assisted mode on the growth yield (YH), decay coefficient (bH) and maximum specific growth rate of heterotrophic biomass (µH). The resulting values for YH, bH and µH were slightly lower for the MEBPR train than for the CEBPR train, but the differences were not statistically significant. It is suggested that MEBPR simulation using ASM2 could be accomplished satisfactorily using parameter values determined for a conventional biological phosphorus removal process, if MEBPR parameter values are not available.


1973 ◽  
Vol 8 (1) ◽  
pp. 91-109 ◽  
Author(s):  
M.E. Jack ◽  
G.J. Farquhar ◽  
G.M. Cornwall

Abstract The importance of phosphorus as a nutrient in the eutrophication of lakes and rivers has been well established (Fruh 1967). It has been shown in addition that a significant amount of this phosphorus arises from the discharge of treated and untreated municipal wastewater (Task Group Report 1967). Consequently, measures are being taken, notably in the Province of Ontario, for removal of phosphorus from wastewater by means of chemical precipitation. Chemicals exhibiting satisfactory phosphorus removal include lime, iron compounds and aluminum compounds (Leckie and Stumm 1970; Schmid 1968; Wuhrman 1968).


1990 ◽  
Vol 22 (7-8) ◽  
pp. 35-43
Author(s):  
K. D. Tracy ◽  
S. N. Hong

The anaerobic selector of the A/0™ process offers many advantages over conventional activated sludge processes with respect to process performance and operational stability. This high-rate, single-sludge process has been successfully demonstrated in full-scale operations for biological phosphorus removal and total nitrogen control in addition to BOD and TSS removal. This process can be easily utilized in upgrading existing treatment plants to meet stringent discharge limitations and to provide capacity expansion. Upgrades of two full-scale installations are described and performance data from the two facilities are presented.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 297-298 ◽  
Author(s):  
Takao Murakami ◽  
Atsushi Miyairi ◽  
Kazuhiro Tanaka

In Japan various biological phosphorus removal processes have recently been researched by laboratory or pilot plant scale studies and most of them have shown good results. Based on these results, the Japan Sewage Works Agency has conducted a full scale study of the biological phosphorus removal process from June 1982 until February 1983, which was the first full scale operation of this process in Japan. The main purpose of the study was to evaluate phosphorus removal efficiency and also nitrogen removal efficiency of the process and in addition, to ascertain the important operating factors of the process. For the study a treatment train of a large scale sewage treatment plant was remodelled. The aeration tank of 3.825 m3 volume was divided into four equal cells. The whole train including return sludge line was operated entirely independently of the other trains. During the experiment the train was operated under two different modes, Mode 1 and Mode 2. In Mode 1, the train was operated as an A/O process, the first cell of the aeration tank being anaerobic and the other cells oxic. In Mode 2, the train was operated as a Modified Phoredox process. In this case, the first cell was anaerobic, but the second cell was anoxic and nitrified liquor was returned to it from the end of the oxic cells. Mode 1 and Mode 2 were further divided into many ‘runs' and the flow rate varied between 12,550 m3 d−1 and 25,270 m3 d−1 , corresponding to retention times of 7.3 hours and 3.6 hours, respectively. Throughout the experimental period the mean value of influent (primary effluent) total-P concentration was 3.38 mg 1−1 , and that of the final effluent was 0.47 mg 1−1 . A cumulated frequency curve of the data showed that about 93% of measured effluent total-P was below 1.0 mg l−1 . Therefore, it can be concluded that with these influent total-P levels, biological phosphorus removal processes can sufficiently satisfy the effluent standard of 1 mg 1−1 total-P. Even when the process was operated as a Modified Phoredox Process, no obstruction to phosphorus removal because of nitrification was observed and phosphorus removal remained good. However, since the sewage treatment plant treated influent from a combined sewerage system, phosphorus removal was sometimes affected by heavy rainfalls. In such cases phosphorus release in the anaerobic cell was insufficient because of increased influent NOx concentration and accordingly increased denitrification level in the anaerobic cell. Therefore, as a result, enhanced phosphorus uptake in the following cells could not be observed. Higher process stability can be expected if an effective countermeasure to high influent NOx concentration can be made. Influence of flow rate fluctuation on the process was also studied. The treatment train was operated for a week under a daily flow rate fluctuation pattern which ranged between 460 m3 hr−1 and 820 m3 hr−1 . Nevertheless, the effluent total-P concentration showed no increase and stayed constantly lower than 0.5 mg 1−1. The oxidation reduction potential (ORP) was an effective control index to evaluate the degree of phosphorus release in the anaerobic cell. Water temperature did not affect phosphorus release and uptake rates.


1991 ◽  
Vol 24 (7) ◽  
pp. 133-148 ◽  
Author(s):  
A. Peter ◽  
F. Sarfert

In investigations concerning sludge bulking in Berlin enhanced biological phosphorus removal was first observed unexpectedly. Because since 1986 an officially preset limit of 2 mg TP/l must be kept in all Berlin wastewater discharges it was decided to explore the capabilities of the observed mechanism under the specific circumstances of the exciting two large treatment plants in Ruhleben (240,000 m3/d) and Marienfelde (100,000 m3/d). For this purpose some of the existing units at both plants were equipped with anaerobic zones which were generated mainly by process modifications. Additionally stage one of the Ruhleben plant was altered completely in order to investigate the combination of biological phosphorus and nitrogen removal as a special pilot study in three parallel trains. The research activities and treatment results gained in each of the two stages of the Ruhleben and in the Marienfelde plant are reported in detail. For example BOD-related phosphorus removal rates were obtained ranging from 2.3-4.5 mg TP per 100 mg BOD removed. It must be stressed that all examinations were performed on full-scale conditions. At present the given limit of 2 mg TP/l in the Ruhleben plant is met without any chemical precipitation at least on average. From the beginning biological phosphorus removal will be integrated into further projected extensions.


Sign in / Sign up

Export Citation Format

Share Document