Growth rate and life span in Drosophila. III. Effect of body size and development temperature on the biphasic relationship between growth rate and life span

1984 ◽  
Vol 27 (2) ◽  
pp. 153-160 ◽  
Author(s):  
A.C. Economos ◽  
F.A. Lints
2011 ◽  
Vol 56 (1-4) ◽  
pp. 11-17 ◽  
Author(s):  
Bartosz Borczyk ◽  
Łukasz Paśko

How Precise are Size-Based Age Estimations in the Sand Lizard (Lacerta Agilis)?Reptiles show a positive correlation between age and body size and it is common practice to infer the age of an animal from its size. However, the growth rate often differs between individuals, thus such practice may lead to false conclusions. Because age of an animal is a very important factor in many ecological studies, it should be determined with a minimum of error. Here, we compare the body size distribution among different age classes of the sand lizard (Lacerta agilis) to infer if it is possible to correctly determine their age on the basis of the body length. Our results show that the average error in age estimation on the basis of the lizard size is 1.36 year which is approximately 1/3 the average sand lizard life span.


Paleobiology ◽  
2021 ◽  
pp. 1-23
Author(s):  
David K. Moss ◽  
Linda C. Ivany ◽  
Douglas S. Jones

Abstract The field of sclerochronology has long been known to paleobiologists. Yet, despite the central role of growth rate, age, and body size in questions related to macroevolution and evolutionary ecology, these types of studies and the data they produce have received only episodic attention from paleobiologists since the field's inception in the 1960s. It is time to reconsider their potential. Not only can sclerochronological data help to address long-standing questions in paleobiology, but they can also bring to light new questions that would otherwise have been impossible to address. For example, growth rate and life-span data, the very data afforded by chronological growth increments, are essential to answer questions related not only to heterochrony and hence evolutionary mechanisms, but also to body size and organism energetics across the Phanerozoic. While numerous fossil organisms have accretionary skeletons, bivalves offer perhaps one of the most tangible and intriguing pathways forward, because they exhibit clear, typically annual, growth increments and they include some of the longest-lived, non-colonial animals on the planet. In addition to their longevity, modern bivalves also show a latitudinal gradient of increasing life span and decreasing growth rate with latitude that might be related to the latitudinal diversity gradient. Is this a recently developed phenomenon or has it characterized much of the group's history? When and how did extreme longevity evolve in the Bivalvia? What insights can the growth increments of fossil bivalves provide about hypotheses for energetics through time? In spite of the relative ease with which the tools of sclerochronology can be applied to these questions, paleobiologists have been slow to adopt sclerochronological approaches. Here, we lay out an argument and the methods for a path forward in paleobiology that uses sclerochronology to answer some of our most pressing questions.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2053
Author(s):  
Junsong Shi ◽  
Baohua Tan ◽  
Lvhua Luo ◽  
Zicong Li ◽  
Linjun Hong ◽  
...  

How to maximize the use of the genetic merits of the high-ranking boars (also called superior ones) is a considerable question in the pig breeding industry, considering the money and time spent on selection. Somatic cell nuclear transfer (SCNT) is one of the potential ways to answer the question, which can be applied to produce clones with genetic resources of superior boar for the production of commercial pigs. For practical application, it is essential to investigate whether the clones and their progeny keep behaving better than the “normal boars”, considering that in vitro culture and transfer manipulation would cause a series of harmful effects to the development of clones. In this study, 59,061 cloned embryos were transferred into 250 recipient sows to produce the clones of superior Pietrain boars. The growth performance of 12 clones and 36 non-clones and the semen quality of 19 clones and 28 non-clones were compared. The reproductive performance of 21 clones and 25 non-clones were also tested. Furthermore, we made a comparison in the growth performance between 466 progeny of the clones and 822 progeny of the non-clones. Our results showed that no significant difference in semen quality and reproductive performance was observed between the clones and the non-clones, although the clones grew slower and exhibited smaller body size than the non-clones. The F1 progeny of the clones showed a greater growth rate than the non-clones. Our results demonstrated through the large animal population showed that SCNT manipulation resulted in a low growth rate and small body size, but the clones could normally produce F1 progeny with excellent growth traits to bring more economic benefits. Therefore, SCNT could be effective in enlarging the merit genetics of the superior boars and increasing the economic benefits in pig reproduction and breeding.


2013 ◽  
Vol 142 (5) ◽  
pp. 1406-1414 ◽  
Author(s):  
Ian A. Tattam ◽  
James R. Ruzycki ◽  
Hiram W. Li ◽  
Guillermo R. Giannico
Keyword(s):  

2004 ◽  
Vol 313 (1) ◽  
pp. 63-73 ◽  
Author(s):  
O. Chomsky ◽  
Y. Kamenir ◽  
M. Hyams ◽  
Z. Dubinsky ◽  
N.E. Chadwick-Furman

Herpetozoa ◽  
2019 ◽  
Vol 32 ◽  
pp. 39-44 ◽  
Author(s):  
Fabio M. Guarino ◽  
Angelica Crottini ◽  
Marcello Mezzasalma ◽  
Jasmin E. Randrianirina ◽  
Franco Andreone

We characterized the body size (as snout-vent length), age, sexual size dimorphism, and growth rate in a population of one of the larger riparian frog from Madagascar (Mantidactylusgrandidieri) from a rainforest patch close to Vevembe, SE Madagascar. We identified a significant female-biased sexual size dimorphism. Age was estimated using phalangeal skeletochronology and was significantly higher in females than in males. Modal age class turned out to be 4 years in both sexes but a large percentage of adult females (75%) fell in the 5–6 years-old classes, while no male exceeded 4 years. We here report M.grandidieri as a medium-long-lived anuran species. Von Bertalanffy’s model showed similar growth trajectories between the sexes although the growth coefficient in females (k = 0.335) was slightly but not significantly higher than in males (k = 0.329).


1931 ◽  
Vol 8 (3) ◽  
pp. 228-249
Author(s):  
F. W. WEYMOUTH ◽  
H. C. McMILLIN ◽  
WILLIS H. RICH

1. The present paper is a study of the growth of a clam (Siliqua patula) under natural conditions and over a wide range of latitude. 2. Various constants derived from the growth data are compared for the different localities. For this species, over the range considered, growth in the southern localities as compared with the northern is initially more rapid but less sustained, leads to a smaller total length and is associated with a shorter life span. 3. Reasons are presented for considering the relative growth-rate as a particularly significant constant leading to more sound biological conclusions than the use of the absolute growth-rate. 4. On the basis of the relative growth-rate, current mathematical expressions for the course of growth are discussed and a formula used which emphasises Minot's conception of a growth-rate constantly declining with age. This expression L = Be-ce-ce-kt, in which L = length at time t, e = base of natural logarithms, and B, c and k are constants, is found to graduate the extensive data in clam growth with significant accuracy.


2013 ◽  
Vol 10 (8) ◽  
pp. 5267-5280 ◽  
Author(s):  
F. H. Chang ◽  
E. C. Marquis ◽  
C. W. Chang ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Allometric scaling of body size versus growth rate and mortality has been suggested to be a universal macroecological pattern, as described by the metabolic theory of ecology (MTE). However, whether such scaling generally holds in natural assemblages remains debated. Here, we test the hypothesis that the size-specific growth rate and grazing mortality scale with the body size with an exponent of −1/4 after temperature correction, as MTE predicts. To do so, we couple a dilution experiment with the FlowCAM imaging system to obtain size-specific growth rates and grazing mortality of natural microphytoplankton assemblages in the East China Sea. This novel approach allows us to achieve highly resolved size-specific measurements that would be very difficult to obtain in traditional size-fractionated measurements using filters. Our results do not support the MTE prediction. On average, the size-specific growth rates and grazing mortality scale almost isometrically with body size (with scaling exponent ∼0.1). However, this finding contains high uncertainty, as the size-scaling exponent varies substantially among assemblages. The fact that size-scaling exponent varies among assemblages prompts us to further investigate how the variation of size-specific growth rate and grazing mortality can interact to determine the microphytoplankton size structure, described by normalized biomass size spectrum (NBSS), among assemblages. We test whether the variation of microphytoplankton NBSS slopes is determined by (1) differential grazing mortality of small versus large individuals, (2) differential growth rate of small versus large individuals, or (3) combinations of these scenarios. Our results indicate that the ratio of the grazing mortality of the large size category to that of the small size category best explains the variation of NBSS slopes across environments, suggesting that higher grazing mortality of large microphytoplankton may release the small phytoplankton from grazing, which in turn leads to a steeper NBSS slope. This study contributes to understanding the relative importance of bottom-up versus top-down control in shaping microphytoplankton size structure.


Sign in / Sign up

Export Citation Format

Share Document