Formaldehyde absorption and visual extinction in Rho Ophiuchus dark clouds

1988 ◽  
Vol 31 ◽  
pp. 487-491
Author(s):  
Y.K. Minn
1979 ◽  
Vol 84 ◽  
pp. 87-92 ◽  
Author(s):  
Gösta Lyngå

The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards 1=50° than towards 1=230°. On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars.


2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


1999 ◽  
Vol 22 (4) ◽  
pp. 683-683 ◽  
Author(s):  
Alessandra Fanini ◽  
Carlo Alberto Marzi

We studied patients with left visual extinction following right hemisphere damage in a simple manual reaction time task using brief visual stimuli. With unilateral lateralized stimuli the patients showed a high proportion of unwanted, reflex-like saccades to either side of stimulation. In contrast, with bilateral stimuli there was an overall decrease in the proportion of unwanted saccades, and the vast majority of them were directed toward the ipsilesional side. The implications of these results for the Findlay & Walker model are discussed.


2011 ◽  
Vol 741 (2) ◽  
pp. 120 ◽  
Author(s):  
J. M. Rathborne ◽  
G. Garay ◽  
J. M. Jackson ◽  
S. Longmore ◽  
Q. Zhang ◽  
...  

2016 ◽  
Vol 363 ◽  
pp. 119-120 ◽  
Author(s):  
Pulikottil Wilson Vinny ◽  
Venugopalan Y. Vishnu ◽  
Vivek Lal

2009 ◽  
Vol 21 (10) ◽  
pp. 1946-1955 ◽  
Author(s):  
Lorella Battelli ◽  
George A. Alvarez ◽  
Thomas Carlson ◽  
Alvaro Pascual-Leone

Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of visual space when targets are simultaneously present in the ipsilesional visual field, a form of visual extinction. Visual extinction may arise due to an imbalance in the normal interhemispheric competition. To directly assess the issue of reciprocal inhibition, we used fMRI to localize those brain regions active during attention-based visual tracking and then applied low-frequency repetitive transcranial magnetic stimulation over identified areas in the left and right intraparietal sulcus to asses the behavioral effects on visual tracking. We induced a severe impairment in visual tracking that was selective for conditions of simultaneous tracking in both visual fields. Our data show that the parietal lobe is essential for visual tracking and that the two hemispheres compete for attentional resources during tracking. Our results provide a neuronal basis for visual extinction in patients with parietal lobe damage.


Sign in / Sign up

Export Citation Format

Share Document