Reduced cellular immune reactivity in healthy individuals during the malaria transmission season

1990 ◽  
Vol 25 (1-3) ◽  
pp. 237-242 ◽  
Author(s):  
Thor G. Theander ◽  
Lars Hviid ◽  
Yousif A. Abu-Zeid ◽  
NasrEldin H. Abdulhadi ◽  
Bakri O. Saeed ◽  
...  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Protus Omondi ◽  
Marion Burugu ◽  
Damaris Matoke-Muhia ◽  
Edwin Too ◽  
Eva A. Nambati ◽  
...  

Abstract Background The efficacy and safety of artemether–lumefantrine (AL) and dihydroartemisinin–piperaquine (DP) against asexual parasites population has been documented. However, the effect of these anti-malarials on sexual parasites is still less clear. Gametocyte clearance following treatment is essential for malaria control and elimination efforts; therefore, the study sought to determine trends in gametocyte clearance after AL or DP treatment in children from a malaria-endemic site in Kenya. Methods Children aged between 0.5 and 12 years from Busia, western Kenya with uncomplicated Plasmodium falciparum malaria were assigned randomly to AL or DP treatment. A total of 334 children were enrolled, and dried blood spot samples were collected for up to 6 weeks after treatment during the peak malaria transmission season in 2016 and preserved. Plasmodium falciparum gametocytes were detected by qRT-PCR and gametocyte prevalence, density and mean duration of gametocyte carriage were determined. Results At baseline, all the 334 children had positive asexual parasites by microscopy, 12% (40/334) had detectable gametocyte by microscopy, and 83.7% (253/302) children had gametocytes by RT-qPCR. Gametocyte prevalence by RT-qPCR decreased from 85.1% (126/148) at day 0 to 7.04% (5/71) at day 42 in AL group and from 82.4% (127/154) at day 0 to 14.5% (11/74) at day 42 in DP group. The average duration of gametocyte carriage as estimated by qRT-PCR was slightly shorter in the AL group (4.5 days) than in the DP group (5.1 days) but not significantly different (p = 0.301). Conclusion The study identifies no significant difference between AL and DP in gametocyte clearance. Gametocytes persisted up to 42 days post treatment in minority of individuals in both treatment arms. A gametocytocidal drug, in combination with artemisinin-based combination therapy, will be useful in blocking malaria transmission more efficiently.


2019 ◽  
Author(s):  
Jessy Goupeyou-Youmsi ◽  
Tsiriniaina Rakotondranaivo ◽  
Nicolas Puchot ◽  
Ingrid Peterson ◽  
Romain Girod ◽  
...  

AbstractBackgroundMalaria is still a heavy public health concern in Madagascar. Few studies combining parasitology and entomology have been recently conducted despite the need for such information to design proper vector control measures. In a region of moderate to intense transmission of both Plasmodium falciparum and Plasmodium vivax, we conducted a combined parasitology and entomology survey in two nearby villages, across a malaria transmission season from December 2016 to April 2017.Methodology/Principal findingsCommunity-based surveys were conducted in the two close by villages at three time points during a single malaria transmission season. Plasmodium carriage in the human populations was determined by Rapid Diagnostic Tests (RDTs), microscopy and real-time PCR. Anthropophilic mosquitoes were captured by human landing captures and presence of Plasmodium sporozoites was assessed by robust Real Time PCR. Overall human malaria prevalence was 8.0% by RDT, 4.8% by microscopy and 11.9% by PCR, mainly due to P. falciparum detected in 92.2% of the PCR positive samples and Plasmodium vivax (5.7%). No significant differences in Plasmodium human carriage was observed between the 2 villages at any time point. Of the 1553 anopheline mosquitoes tested, 13 were found carrying Plasmodium sporozoites, the majority of them being captured outdoor. The mosquito sporozoite indices were not significantly different between the two villages. However, our entomological analysis revealed that Anopheles coustani was the main vector in one village, being responsible of 25.5 infective bites during the whole survey, whereas it was Anopheles arabiensis in the other village with 15 infective bites. In addition, we found a significant higher number of endophagic An. coustani and An. arabiensis in one village compared to the other.Conclusions/SignificanceDespite similar human malaria prevalence in two close by villages, the entomological survey demonstrated the contribution of two different mosquito species in each village, and importantly the role of a suspected secondary malaria vector, An. coustani, as the main vector in one village. This, along with its higher endophagic rate in that village, highlights the importance of combining parasitology and entomology surveys for better targeting the actual local malaria vector. Such study should contribute to the malaria pre-elimination goal established under the 2018-2022 National Malaria Strategic Plan.Author SummaryMalaria is still a major health concern in many countries in sub-Saharan Africa such as Madagascar. In this study, we determined the contribution of malaria vectors in the transmission of Plasmodium parasites in two nearby villages in an area of moderate to high malaria transmission in Madagascar. We collected, during a single malaria transmission season, parasitological data in the human population and entomological data in the mosquito population, in order to evaluate Plasmodium carriage in these two populations. The results showed that despite similarity in human malaria prevalence and in vector species diversity in each village, the contribution of vectors was different between the two villages. An. arabiensis was the major vector in Ambohitromby while it was An. coustani that played this role in Miarinarivo. Importantly, this study is the first that clearly demonstrates that An. coustani could act as a major local vector in Madagascar. Such study should help deploying adapted malaria vector control and contributing to the malaria pre-elimination goal established under the 2018-2022 National Malaria Strategic Plan.


Author(s):  
Mouctar Diallo ◽  
Djibril Sangare ◽  
Assetou Diarra ◽  
Djènèba Camara ◽  
Ramata Mariko ◽  
...  

Malaria vector control strategy is a key component of malaria control, it can interrupt malaria transmission. The effective use of this strategy is based on a depth knowledge of vector life cycle and the environmental factors that influence its life. The aims of this study was to determine the dynamics of the adult population of An.gambiae s.l. and to evaluate the allelic polymorphism of TEP1 gene implicate in malaria parasite lysis.  This was conducted in endemic malaria areas Nanguilabougou and its hamlet of culture Kouroubabougou in the rural commune of Bancoumana between June 2014 and November 2015 during the high malaria transmission season. Mosquitoes were collected using light traps, stored in 50-ml tubes containing ethanol 70%, processed in the laboratory using PCR (DNA extraction, species identification and genotyping).  In 2014 a total of 1433 mosquitoes were collected, An coluzzii was predominant 72.2% (n= 1034) follow by An gambiae 21.1% and hybrid An coluzzii/gambiae 3.1%. The same situation was observed in 2015 with 6612 mosquitoes collected, An coluzzii 72.4% follow by An gambiae 16.7% and hybrid An. coluzzii/gambiae 0.4%. Two An. arabiensis were found only in 2015. A strong presence of the genotype R1/R1 within An. coluzzii 85.2% in 2014 and 66.2% in 2015 was observed. An. gambiae was more associated with the S1/S1 genotype in 2014 and with the S1/R2 allele in 2015. The other allele were founded at low frequency. An. coluzzii is the most predominant during high malaria transmission season among An. gambiae s.l. species. It is also carried the high frequency TEP1 gene implicate in malaria parasite lysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noah T. Ventimiglia ◽  
Emily M. Stucke ◽  
Drissa Coulibaly ◽  
Andrea A. Berry ◽  
Kirsten E. Lyke ◽  
...  

AbstractPlasmodium falciparum erythrocyte membrane protein-1s (PfEMP1s), diverse malaria proteins expressed on the infected erythrocyte surface, play an important role in pathogenesis, mediating adhesion to host vascular endothelium. Antibodies to particular non-CD36-binding PfEMP1s are associated with protection against severe disease. We hypothesized that given lifelong P. falciparum exposure, Malian adults would have broad PfEMP1 serorecognition and high seroreactivity levels during follow-up, particularly to non-CD36-binding PfEMP1s such as those that attach to endothelial protein C receptor (EPCR) and intercellular adhesion molecule-1 (ICAM-1). Using a protein microarray, we determined serologic responses to 166 reference PfEMP1 fragments during a dry and subsequent malaria transmission season in Malian adults. Malian adult sera had PfEMP1 serologic responses throughout the year, with decreased reactivity to a small subset of PfEMP1 fragments during the dry season and increases in reactivity to a different subset of PfEMP1 fragments during the subsequent peak malaria transmission season, especially for intracellular PfEMP1 domains. For some individuals, PfEMP1 serologic responses increased after the dry season, suggesting antigenic switching during asymptomatic infection. Adults were more likely to experience variable serorecognition of CD36-binding PfEMP1s than non-CD36-binding PfEMP1s that bind EPCR or ICAM-1, which remained serorecognized throughout the year. Sustained seroreactivity to non-CD36-binding PfEMP1s throughout adulthood amid seasonal fluctuation patterns may reflect underlying protective severe malaria immunity and merits further investigation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mariken de Wit ◽  
Matthew Cairns ◽  
Yves Daniel Compaoré ◽  
Issaka Sagara ◽  
Irene Kuepfer ◽  
...  

Abstract Background Malaria and malnutrition remain major problems in Sahel countries, especially in young children. The direct effect of malnutrition on malaria remains poorly understood, and may have important implications for malaria control. In this study, nutritional status and the association between malnutrition and subsequent incidence of symptomatic malaria were examined in children in Burkina Faso and Mali who received either azithromycin or placebo, alongside seasonal malaria chemoprevention. Methods Mid-upper arm circumference (MUAC) was measured in all 20,185 children who attended a screening visit prior to the malaria transmission season in 2015. Prior to the 2016 malaria season, weight, height and MUAC were measured among 4149 randomly selected children. Height-for-age, weight-for-age, weight-for-height, and MUAC-for-age were calculated as indicators of nutritional status. Malaria incidence was measured during the following rainy seasons. Multivariable random effects Poisson models were created for each nutritional indicator to study the effect of malnutrition on clinical malaria incidence for each country. Results In both 2015 and 2016, nutritional status prior to the malaria season was poor. The most prevalent form of malnutrition in Burkina Faso was being underweight (30.5%; 95% CI 28.6–32.6), whereas in Mali stunting was most prevalent (27.5%; 95% CI 25.6–29.5). In 2016, clinical malaria incidence was 675 per 1000 person-years (95% CI 613–744) in Burkina Faso, and 1245 per 1000 person-years (95% CI 1152–1347) in Mali. There was some evidence that severe stunting was associated with lower incidence of malaria in Mali (RR 0.81; 95% CI 0.64–1.02; p = 0.08), but this association was not seen in Burkina Faso. Being moderately underweight tended to be associated with higher incidence of clinical malaria in Burkina Faso (RR 1.27; 95% CI 0.98–1.64; p = 0.07), while this was the case in Mali for moderate wasting (RR 1.27; 95% CI 0.98–1.64; p = 0.07). However, these associations were not observed in severely affected children, nor consistent between countries. MUAC-for-age was not associated with malaria risk. Conclusions Both malnutrition and malaria were common in the study areas, high despite high coverage of seasonal malaria chemoprevention and long-lasting insecticidal nets. However, no strong or consistent evidence was found for an association between any of the nutritional indicators and the subsequent incidence of clinical malaria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alfred Amambua-Ngwa ◽  
David Jeffries ◽  
Julia Mwesigwa ◽  
Aminata Seedy-Jawara ◽  
Joseph Okebe ◽  
...  

Abstract Malaria has declined significantly in The Gambia and determining transmission dynamics of Plasmodium falciparum can help targeting control interventions towards elimination. This can be inferred from genetic similarity between parasite isolates from different sites and timepoints. Here, we imposed a P. falciparum life cycle time on a genetic distance likelihood model to determine transmission paths from a 54 SNP barcode of 355 isolates. Samples were collected monthly during the 2013 malaria season from six pairs of villages spanning 300 km from western to eastern Gambia. There was spatial and temporal hierarchy in pairwise genetic relatedness, with the most similar barcodes from isolates within the same households and village. Constrained by travel data, the model detected 60 directional transmission events, with 27% paths linking persons from different regions. We identified 13 infected individuals (4.2% of those genotyped) responsible for 2 to 8 subsequent infections within their communities. These super-infectors were mostly from high transmission villages. When considering paths between isolates from the most distant regions (west vs east) and travel history, there were 3 transmission paths from eastern to western Gambia, all at the peak (October) of the malaria transmission season. No paths with known travel originated from the extreme west to east. Although more than half of all paths were within-village, parasite flow from east to west may contribute to maintain transmission in western Gambia, where malaria transmission is already low. Therefore, interrupting malaria transmission in western Gambia would require targeting eastern Gambia, where malaria prevalence is substantially higher, with intensified malaria interventions.


Sign in / Sign up

Export Citation Format

Share Document