Mechanisms of absorption enhancement and tight junction regulation

1994 ◽  
Vol 29 (3) ◽  
pp. 253-267 ◽  
Author(s):  
Jerome Hochman ◽  
Per Artursson
2008 ◽  
Vol 28 (5) ◽  
pp. 528-541 ◽  
Author(s):  
Supriya D. Mahajan ◽  
Ravikumar Aalinkeel ◽  
Donald E. Sykes ◽  
Jessica L. Reynolds ◽  
B. Bindukumar ◽  
...  

1997 ◽  
Vol 273 (4) ◽  
pp. C1378-C1385 ◽  
Author(s):  
Jerrold R. Turner ◽  
Brian K. Rill ◽  
Susan L. Carlson ◽  
Denise Carnes ◽  
Rachel Kerner ◽  
...  

Tight junctions serve as the rate-limiting barrier to passive movement of hydrophilic solutes across intestinal epithelia. After activation of Na+-glucose cotransport, the permeability of intestinal tight junctions is increased. Because previous analyses of this physiological tight junction regulation have been restricted to intact mucosae, dissection of the mechanisms underlying this process has been limited. To characterize this process, we have developed a reductionist model consisting of Caco-2 intestinal epithelial cells transfected with the intestinal Na+-glucose cotransporter, SGLT1. Monolayers of SGLT1 transfectants demonstrate physiological Na+-glucose cotransport. Activation of SGLT1 results in a 22 ± 5% fall in transepithelial resistance (TER) ( P< 0.001). Similarly, inactivation of SGLT1 by addition of phloridzin increases TER by 24 ± 2% ( P < 0.001). The increased tight junction permeability is size selective, with increased flux of small nutrient-sized molecules, e.g., mannitol, but not of larger molecules, e.g., inulin. SGLT1-dependent increases in tight junction permeability are inhibited by myosin light-chain kinase inhibitors (20 μM ML-7 or 40 μM ML-9), suggesting that myosin regulatory light-chain (MLC) phosphorylation is involved in tight junction regulation. Analysis of MLC phosphorylation showed a 2.08-fold increase after activation of SGLT1 ( P< 0.01), which was inhibited by ML-9 ( P < 0.01). Thus monolayers incubated with glucose and myosin light-chain kinase inhibitors are comparable to monolayers incubated with phloridzin. ML-9 also inhibits SGLT1-mediated tight junction regulation in small intestinal mucosa ( P < 0.01). These data demonstrate that epithelial cells are the mediators of physiological tight junction regulation subsequent to SGLT1 activation. The intimate relationship between tight junction regulation and MLC phosphorylation suggests that a critical step in regulation of epithelial tight junction permeability may be myosin ATPase-mediated contraction of the perijunctional actomyosin ring and subsequent physical tension on the tight junction.


2000 ◽  
Vol 279 (6) ◽  
pp. C1918-C1924 ◽  
Author(s):  
Jerrold R. Turner ◽  
Eric D. Black ◽  
Jeff Ward ◽  
Chung-Ming Tse ◽  
Frederick A. Uchwat ◽  
...  

Initiation of intestinal Na+-glucose cotransport results in transient cell swelling and sustained increases in tight junction permeability. Since Na+/H+ exchange has been implicated in volume regulation after physiological cell swelling, we hypothesized that Na+/H+ exchange might also be required for Na+-glucose cotransport-dependent tight junction regulation. In Caco-2 monolayers with active Na+-glucose cotransport, inhibition of Na+/H+ exchange with 200 μM 5-( N, N-dimethyl)- amiloride induced 36 ± 2% increases in transepithelial resistance (TER). Evaluation using multiple Na+/H+ exchange inhibitors showed that inhibition of the Na+/H+ exchanger 3 (NHE3) isoform was most closely related to TER increases. TER increases due to NHE3 inhibition were related to cytoplasmic acidification because cytoplasmic alkalinization with 5 mM NH4Cl prevented both cytoplasmic acidification and TER increases. However, NHE3 inhibition did not affect TER when Na+-glucose cotransport was inhibited. Myosin II regulatory light chain (MLC) phosphorylation decreased up to 43 ± 5% after inhibition of Na+/H+ exchange, similar to previous studies that associate decreased MLC phosphorylation with increased TER after inhibition of Na+-glucose cotransport. However, NHE3 inhibitors did not diminish Na+-glucose cotransport. These data demonstrate that inhibition of NHE3 results in decreased MLC phosphorylation and increased TER and suggest that NHE3 may participate in the signaling pathway of Na+-glucose cotransport-dependent tight junction regulation.


2014 ◽  
Vol 42 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Sarah J. Fletcher ◽  
Joshua Z. Rappoport

Epithelial layers are integral for many physiological processes and are maintained by intercellular adhesive structures. During disease, these structures can disassemble, leading to breakdown of epithelia. TJs (tight junctions) are one type of intercellular adhesion. Loss of TJs has been linked to the pathogenesis of many diseases. The present review focuses on the role of vesicle trafficking in regulation of TJs, in particular trafficking of the TJ protein occludin. We examine how endocytosis and endosomal recycling modulate occludin localization under steady-state conditions and during stimulated TJ disassembly.


1993 ◽  
Vol 264 (5) ◽  
pp. C1096-C1101 ◽  
Author(s):  
J. L. Madara ◽  
S. Carlson ◽  
J. M. Anderson

Tight junctions restrict diffusion of hydrophilic solutes through the paracellular pathways of columnar epithelia. It is now apparent that the barrier function of tight junctions is physiologically regulated. Current models of the tight junction envisage junctional subunits consisting of extracellular "kisses" between plasma membranes of adjacent cells, intramembrane components represented by freeze-fracture fibrils, and cytoplasmic elements of the cytoskeleton. Insights into functional relationships between these various components of tight junctions should be provided by mapping component interrelationships in states of altered junctional permeability. Here we define the spatial distribution of ZO-1 during a state of physiological regulation of intestinal absorptive cell tight junctions. Enhanced permeation of absorptive cell junctions in response to activation of apical membrane Na(+)-solute cotransporters does not lead to redistribution of the ZO-1 pool, as judged from quantitative ultrastructural immunolocalization studies employing two different ZO-1 antibodies. Surprisingly, ZO-1, which normally localizes under junctional kisses/fibrils, focally persists at sites where junctional kisses/fibrils are cleared. These findings suggest that 1) spatial redistribution of ZO-1 does not contribute to physiological regulation of junctions elicited by activation of Na(+)-solute cotransport and 2) ZO-1 and junctional fibrils may spatially dissociate during such regulated states.


Sign in / Sign up

Export Citation Format

Share Document