Gualou Xiebai Decoction ameliorates increased Caco-2 monolayer permeability induced by bile acids via tight junction regulation, oxidative stress suppression and apoptosis reduction

Author(s):  
Jiyuan Su ◽  
Zhiqing He ◽  
Yunhua Yu ◽  
Mingfang Lu ◽  
Zonggui Wu ◽  
...  
Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


2003 ◽  
Vol 124 (4) ◽  
pp. A314
Author(s):  
Ramzi El Asmar ◽  
Lucia Zampini ◽  
Tiziana Galeazzi ◽  
Manjusha Takar ◽  
Sandro Drago ◽  
...  

2008 ◽  
Vol 28 (5) ◽  
pp. 528-541 ◽  
Author(s):  
Supriya D. Mahajan ◽  
Ravikumar Aalinkeel ◽  
Donald E. Sykes ◽  
Jessica L. Reynolds ◽  
B. Bindukumar ◽  
...  

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
D'Ann E. Arthur ◽  
Jeannette E. Gonzalez ◽  
Jonathan M. King

2018 ◽  
Vol 49 (4) ◽  
pp. 1352-1363 ◽  
Author(s):  
Yuling Li ◽  
Su Wang ◽  
Xingjuan Gao ◽  
Ying Zhao ◽  
Yongwei Li ◽  
...  

Background: Intestinal mucositis is a common side-effect after anti-cancer therapy, which may greatly restrict the therapeutic effects. We aimed to explore the functional role of octreotide (OCT) in lipopolysaccharide (LPS)-induced autophagy of human intestinal epithelial cells as well as the underlying mechanisms. Methods: Cell viability and expression of proteins related to autophagy, AMPK and the mTOR pathway in LPS-treated Caco-2 cells were determined by CCK-8 assay and Western blot analysis, respectively. Effects of OCT on LPS-induced alterations as well as miR-101 expression were measured. Then, miR-101 was aberrantly expressed, and whether OCT alleviated LPS-induced autophagy through miR-101 was tested. Next, whether TGF-β-activated kinase 1 (TAK1) was involved in the regulation of miR-101 in LPS-induced autophagy was studied. Effects of OCT on monolayer permeability and tight junction level were analyzed via measuring transepithelial electrical resistance (TEER) and expression of tight junction proteins. Results: LPS reduced cell viability and increased autophagy through activating AMPK and inhibiting the mTOR pathway in Caco-2 cells. OCT alleviated LPS-induced alterations and repressed degradation of autophagosome. Then, we found that OCT affected autophagy through up-regulating miR-101 in LPS-treated cells. Moreover, miR-101-induced inactivation of AMPK and activation of the mTOR pathway in LPS-treated cells were reversed by inhibition of TAK1 phosphorylation. Finally, we found miR-101 was up-regulated in differentiated cells, and OCT protected the monolayer permeability and tight junction level. Conclusion: OCT repressed autophagy through miR-101-mediated inactivation of TAK1, along with inactivation of AMPK and activation of the mTOR pathway in LPS-treated Caco-2 cells.


2018 ◽  
Vol 9 (6) ◽  
pp. 3321-3329 ◽  
Author(s):  
H. Wu ◽  
T. Luo ◽  
Y. M. Li ◽  
Z. P. Gao ◽  
K. Q. Zhang ◽  
...  

Granny Smith apple procyanidin extracts upregulate tight junction protein expression, probably acting via the modulation of oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells.


2010 ◽  
Vol 15 (5) ◽  
pp. 1156-1165 ◽  
Author(s):  
Lucie Muchova ◽  
Katerina Vanova ◽  
Jaroslav Zelenka ◽  
Martin Lenicek ◽  
Tomas Petr ◽  
...  

1997 ◽  
Vol 273 (4) ◽  
pp. C1378-C1385 ◽  
Author(s):  
Jerrold R. Turner ◽  
Brian K. Rill ◽  
Susan L. Carlson ◽  
Denise Carnes ◽  
Rachel Kerner ◽  
...  

Tight junctions serve as the rate-limiting barrier to passive movement of hydrophilic solutes across intestinal epithelia. After activation of Na+-glucose cotransport, the permeability of intestinal tight junctions is increased. Because previous analyses of this physiological tight junction regulation have been restricted to intact mucosae, dissection of the mechanisms underlying this process has been limited. To characterize this process, we have developed a reductionist model consisting of Caco-2 intestinal epithelial cells transfected with the intestinal Na+-glucose cotransporter, SGLT1. Monolayers of SGLT1 transfectants demonstrate physiological Na+-glucose cotransport. Activation of SGLT1 results in a 22 ± 5% fall in transepithelial resistance (TER) ( P< 0.001). Similarly, inactivation of SGLT1 by addition of phloridzin increases TER by 24 ± 2% ( P < 0.001). The increased tight junction permeability is size selective, with increased flux of small nutrient-sized molecules, e.g., mannitol, but not of larger molecules, e.g., inulin. SGLT1-dependent increases in tight junction permeability are inhibited by myosin light-chain kinase inhibitors (20 μM ML-7 or 40 μM ML-9), suggesting that myosin regulatory light-chain (MLC) phosphorylation is involved in tight junction regulation. Analysis of MLC phosphorylation showed a 2.08-fold increase after activation of SGLT1 ( P< 0.01), which was inhibited by ML-9 ( P < 0.01). Thus monolayers incubated with glucose and myosin light-chain kinase inhibitors are comparable to monolayers incubated with phloridzin. ML-9 also inhibits SGLT1-mediated tight junction regulation in small intestinal mucosa ( P < 0.01). These data demonstrate that epithelial cells are the mediators of physiological tight junction regulation subsequent to SGLT1 activation. The intimate relationship between tight junction regulation and MLC phosphorylation suggests that a critical step in regulation of epithelial tight junction permeability may be myosin ATPase-mediated contraction of the perijunctional actomyosin ring and subsequent physical tension on the tight junction.


Sign in / Sign up

Export Citation Format

Share Document