Tribological evaluation of hydrogen-free ion beam deposited diamondlike carbon coatings

Author(s):  
G.D. Lempert ◽  
Y. Lifshitz ◽  
S. Rotter ◽  
A.J. Armini ◽  
S. Bunker
1986 ◽  
Vol 49 (18) ◽  
pp. 1157-1159 ◽  
Author(s):  
S. Prawer ◽  
R. Kalish ◽  
M. Adel ◽  
V. Richter

Author(s):  
V N Koinkar ◽  
B Bhushan

For long durability of magnetic media and head sliders, protective overcoats of hydrogenated amorphous carbon (a-C:H) are generally used. In this study, microtribological studies of hydrogenated amorphous carbon coatings deposited on a single-crystal silicon using three different deposition techniques—sputtering, ion beam and cathodic arc—were studied using atomic force/friction force microscopy (AFM/FFM). Roughnesses of all coatings at two scan sizes of 1 μm × 1 μm and 10 μm × 10 μm are comparable. Surface topography of sputtered carbon coating shows some particulates on the surface. Cathodic arc carbon coating exhibits the lowest coefficient of friction value followed by ion beam and sputtered carbon coatings. Microscratch and wear resistance and nanohardness of cathodic arc carbon coating are superior to those of ion beam and sputtered carbon coatings. Cathodic arc deposited carbon coatings are potential candidates for magnetic disks and heads.


1996 ◽  
Vol 438 ◽  
Author(s):  
C. G. Fountzoulas ◽  
J. D. Demaree ◽  
L. C. Sengupta ◽  
J. K. Hirvonen

AbstractAmorphous, 700 nm thick, diamond-like carbon coatings containing silicon (Si-DLC), farmed by Ar+ ion beam assisted deposition (IBAD) on silicon substrates, were annealed in air at temperatures ranging from room temperature to 600°C for 30 minutes. RBS analysis showed that the composition of the films remained the same up to 200°C, but at higher temperatures the Si-DLC coatings began to oxidize at the outer surface of the coating, forming a surface layer of SiO2. After in-air annealing at 600°C the coating had been completely converted to SiO2, with no trace of carbon seen by RBS. FTIR spectra of the unannealed coatings showed a very broad mode typical of Si-DLC bonding as well as some absorption features associated with Si and SiO2. Above 200°C the transmission mode shifted to higher frequencies which may be caused by the growth of SiO2 and the decrease of the Si-DLC film thickness. The room temperature ball-on-disk friction coefficient of the coating against a 1/2′′ diameter 440 C steel ball at 1 N load ranged from 0.2 for the original coating up to 0.5 after a 100° anneal and returned to 0.2 after annealing at 200–400°C and fell to 0.12 after a 500°C exposure. The average Knoop microhardness (uncorrected for substrate effects) was 10 GPa (1,000 KHN) for coatings annealed at temperatures as high as 400°C. All coatings up to 500 °C passed the qualitative “Scotch Tape” test.


2019 ◽  
Vol 970 ◽  
pp. 283-289
Author(s):  
Alexander S. Rudenkov ◽  
Alexander V. Rogachev ◽  
Alexander N. Kupo ◽  
Petr A. Luchnikov ◽  
Nataliya Chicherina

The effect of the formation and heat treatment modes of silicon-carbon coatings deposited by ion-beam sputtering of silicon carbide on their morphology, chemical and phase composition is determined. It has been established that an increase in the power of the ion source from 432 W to 738 W leads to a decrease in the sp3/sp2 phase ratio by 1.7 times and an increase in the ratio of Si-C/Si-O bonds by 1.9 times. It is shown that doping of carbon coatings with silicon carbide increases their heat resistance.


1996 ◽  
Vol 68 (12) ◽  
pp. 1666-1668 ◽  
Author(s):  
F. Y. Chuang ◽  
C. Y. Sun ◽  
H. F. Cheng ◽  
C. M. Huang ◽  
I. N. Lin

1994 ◽  
Vol 76 (10) ◽  
pp. 5949-5954 ◽  
Author(s):  
Gregory P. Johnston ◽  
Prabhat Tiwari ◽  
Donald J. Rej ◽  
Harold A. Davis ◽  
William J. Waganaar ◽  
...  

1999 ◽  
Vol 14 (5) ◽  
pp. 2173-2180 ◽  
Author(s):  
M. Nastasi ◽  
P. Kodali ◽  
K. C. Walter ◽  
J. D. Embury ◽  
R. Raj ◽  
...  

The fracture behavior of diamondlike carbon (DLC) coatings on Si substrates has been examined using microindentation. The presence of DLC coatings reduces the radial crack length to less than one-half the crack length observed in uncoated Si at the same indenter load. A total work of fracture analysis of the radial cracks formed in the DLC-coating/Si-substrate system gives 10.1 MPa m1/2 as the average fracture toughness for DLC alone. A bond-breaking calculation for DLC suggests that the elastic limit fracture toughness should be 1.5 MPa (m)1/2. The higher value obtained from experiment and total work analysis suggests that plastic work and/or a tortuous path crack evolution occurred during DLC fracture process.


Carbon ◽  
2014 ◽  
Vol 80 ◽  
pp. 534-543 ◽  
Author(s):  
Mahdi Khadem ◽  
Oleksiy V. Penkov ◽  
Volodymyr E. Pukha ◽  
Maxim V. Maleyev ◽  
Dae-Eun Kim

Sign in / Sign up

Export Citation Format

Share Document