Impact of ozone, acid mist and soil characteristics on growth and development of fine roots and ectomycorrhiza of young clonal Norway spruce

1990 ◽  
Vol 64 (3-4) ◽  
pp. 255-263 ◽  
Author(s):  
Helmut Blaschke ◽  
Markus Weiss
1990 ◽  
Vol 8 (4) ◽  
pp. 215-220 ◽  
Author(s):  
Edward F. Gilman

Abstract Root form is governed by seedling genetics and soil characteristics including texture, compaction, depth to the water table, fertility, moisture content and other factors. Trees develop lateral roots growing parallel to the surface of the soil. These are generally located in the top 30 cm (12 in) of soil. Fine roots emerge from lateral roots and grow into the soil close to the surface. If soil conditions permit, some trees grow tap and other vertically oriented roots capable of penetrating several feet into the soil. Many trees, particularly those planted in urban landscapes, do not generate tap roots. Lateral roots spread to well beyond the edge of the branches. Their growth in governed by competition from other plants, available water, soil temperature, fertility, stage of shoot growth and other factors.


2009 ◽  
Vol 39 (1) ◽  
pp. 64-75 ◽  
Author(s):  
Lu-Min Vaario ◽  
Arja Tervonen ◽  
Kati Haukioja ◽  
Markku Haukioja ◽  
Taina Pennanen ◽  
...  

Over a 5 year period, we examined the influence of substrate and fertilization on nursery growth and outplanting performance of Norway spruce (Picea abies (L.) Karst.). We focused on the relative growth and development of roots and shoots and the colonization intensity and diversity of ectomycorrhizal (ECM) fungi. In the nursery, a conventional substrate (low-humified Sphagnum peat) supplemented with woody material (wood fibre and pine bark) and either mineral or organic fertilizers yielded shorter seedlings than those grown on the unmodified substrate. However, after outplanting, the growth rate of seedlings cultivated on modified substrates was higher than that of seedlings grown on the unmodified substrate. Seedlings cultivated in modified substrates had significantly higher root/shoot ratios and ECM diversity; the latter remained significant after ≥3 years of outplanting. Seedlings grown on a substrate containing 50% woody material and supplemented with organic fertilizer had the highest growth rate among all seedlings during the 3 year period of outplanting. Colonization intensity of ECM fungi was high in all seedlings except for those grown in heavily fertilized substrate. This study suggests that nursery techniques that produce seedlings with higher root/shoot ratios and ECM diversities could improve plantation success and growth rate for at least the first 3 years of outplanting.


2010 ◽  
Vol 42 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Karna Hansson ◽  
Dan Berggren Kleja ◽  
Karsten Kalbitz ◽  
Hanna Larsson

2009 ◽  
Vol 55 (No. 12) ◽  
pp. 556-566 ◽  
Author(s):  
B. Konôpka

Interspecific comparisons of the fine root “behaviour” under stressful situations may answer questions related to resistance to changing environmental conditions in the particular tree species. Our study was focused on Norway spruce (<I>Picea abies</I> [L.] Karst.) and European beech (<I>Fagus sylvatica</I> L.) grown in an acidic soil where acidity was caused by past air pollution in the Kysucké Beskydy Mts., North-Western Slovakia. Between April and October 2006, the following fine root traits were studied: biomass and necromass seasonal dynamics, vertical distribution, production, mortality, fine root turnover and production to mortality ratio. Sequential soil coring was repeatedly implemented in April, June, July, September, and October including the soil layers of 0–5, 5–15, 15–25, and 25–35 cm. Results indicated that spruce had a lower standing stock of fine roots than beech, and fine roots of spruce were more superficially distributed than those of beech. Furthermore, we estimated higher seasonal dynamics and also higher turnover of fine roots in spruce than in beech. The production to mortality ratio was higher in beech than in spruce, which was hypothetically explained as the effect of drought episodes that occurred in July and August. The results suggested that the beech root system could resist a physiological stress better than that of spruce. This conclusion was supported by different vertical distributions of fine roots in spruce and beech stands.


1990 ◽  
Vol 64 (3-4) ◽  
pp. 279-293 ◽  
Author(s):  
G. Führer ◽  
M. Dunkl ◽  
D. Knoppik ◽  
H. Selinger ◽  
L.W. Blank ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document