Particulate organic matter in the coastal and estuarine waters of Goa and its relationship with phytoplankton production

1985 ◽  
Vol 21 (2) ◽  
pp. 235-243 ◽  
Author(s):  
X.N. Verlencar ◽  
S.Z. Qasim
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2345 ◽  
Author(s):  
Blessing O. Edje ◽  
Ali B. Ishaque ◽  
Paulinus Chigbu

The suspended particulate organic matter (SPOM) in transitional waters such as the Maryland Coastal Bays (MCBs) is derived from allochthonous and autochthonous sources. Little is known, however, about the contribution of terrestrially derived organic matter to SPOM in the MCBs. The sources of SPOM in the MCBs were evaluated using stable isotope ratios of nitrogen (δ15N) and carbon (δ13C), and C/N molar ratios. The values of SPOM δ15N, δ13C and C/N ratios from samples collected seasonally (July 2014 to October 2017) at 13 sites ranged from −0.58 to 10.51‰, −26.85 to −20.33‰, and 1.67 to 11.36, respectively, indicating a mixture of terrestrial SPOM transported by tributaries, marine organic matter from phytoplankton, and sewage. SPOM δ13C levels less than −24‰, suggesting the dominance of terrestrially derived carbon, occurred mainly at sites close to the mouths of tributaries, and were less depleted at sites near the ocean. The mean value of SPOM δ13C was higher in October 2014 (−22.76‰) than in October 2015 (−24.65‰) and 2016 (−24.57‰) likely due to differences in river discharge. Much lower values (<4‰) of δ15N observed in February 2016 coincided with a high freshwater inflow that accompanied a major storm, indicating a strong influence of untreated sewage. Results from a two end-member mixing model suggest that on average, the SPOM in the MCBs is composed of 44% terrestrial materials with the highest percent contributions in October 2015 and 2016 (61%), and lowest (28%) in July 2015. The contribution of terrestrial materials to the SPOM was highest (58%) near the mouth of St. Martin River and lowest (25%) near the Ocean City inlet. SPOM composition and distribution in MCBs are, therefore, a function of land use, freshwater inflow, and water circulation that influence in situ phytoplankton production, and the transport and distribution of terrestrially derived materials.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 179-188 ◽  
Author(s):  
K. F. Janning ◽  
X. Le Tallec ◽  
P. Harremoës

Hydrolysis and degradation of particulate organic matter has been isolated and investigated in laboratory scale and pilot scale biofilters. Wastewater was supplied to biofilm reactors in order to accumulate particulates from wastewater in the filter. When synthetic wastewater with no organic matter was supplied to the reactors, hydrolysis of the particulates was the only process occurring. Results from the laboratory scale experiments under aerobic conditions with pre-settled wastewater show that the initial removal rate is high: rV, O2 = 2.1 kg O2/(m3 d) though fast declining towards a much slower rate. A mass balance of carbon (TOC/TIC) shows that only 10% of the accumulated TOC was transformed to TIC during the 12 hour long experiment. The pilot scale hydrolysis experiment was performed in a new type of biofilm reactor - the B2A® biofilter that is characterised by a series of decreasing sized granular media (80-2.5 mm). When hydrolysis experiments were performed on the anoxic pilot biofilter with pre-screened wastewater particulates as carbon source, a rapid (rV, NO3=0.7 kg NO3-N/(m3 d)) and a slowler (rV, NO3 = 0.3 kg NO3-N/(m3 d)) removal rate were observed at an oxygen concentration of 3.5 mg O2/l. It was found that the pilot biofilter could retain significant amounts of particulate organic matter, reducing the porosity of the filter media of an average from 0.35 to 0.11. A mass balance of carbon shows that up to 40% of the total incoming TOC accumulates in the filter at high flow rates. Only up to 15% of the accumulated TOC was transformed to TIC during the 24 hour long experiment.


2019 ◽  
Author(s):  
Marisa Repasch ◽  
◽  
Joel Scheingross ◽  
Joel Scheingross ◽  
Carolin Zakrzewski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document