Combination therapy of ACNU and ifosfamide in tumor bearing mice with M2661 breast cancer, B16 malignant melanoma or C38 colon cancer

1990 ◽  
Vol 26 (3) ◽  
pp. 321-325 ◽  
Author(s):  
Matthijs H. Silbermann ◽  
Bea v.d. Vecht ◽  
Gerrit Stoter ◽  
Kees Nooter ◽  
Jaap Verweij
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A214-A214
Author(s):  
Christoph Eberle ◽  
Jenny Rowe ◽  
Ann Fiore ◽  
Robert Mihalek ◽  
Stephen Festin

BackgroundBreast and colon cancer rank second and third, respectively, in world-wide prevalence of malignancies and present a large unmet medical need. The correlation between lymphocyte infiltration into the tumor microenvironment and efficacy of anti-cancer immunotherapies has been established. Therefore, relevant and cost-saving pre-clinical models are needed for developing new treatment approaches to predominant human tumor types. HuCD34NCG mice facilitate studying human immune responses in vivo elicited by experimental therapeutic antibodies. We characterized growth kinetics and human immune responses to checkpoint blockade in human breast and colon tumor-bearing HuCD34NCG mice. Aging, non tumor-bearing HuCD34NCG mice were also monitored for indicators of spontaneous hematopoietic cancer formation.MethodsHSC engraftment was quality controlled prior to inoculating HuCD34NCG mice with either colon adenocarcinoma (COLO 205) or triple negative breast cancer (MDA-MB-436) cells (both purchased from American Type Culture Collection, Manassas, VA). Mice were randomized into treatment groups based on tumor size, and checkpoint inhibitor antibodies were dosed twice weekly (anti-human PD-1, BioXcell clone: RMP1-14 or Keytruda; anti-human CTLA-4, BioXcell clone: BN13; and combination therapy). Body weights, general health status and survival were monitored. Peripheral blood (PB) and selected tissues were analyzed for the presence and composition of human immune cells by acoustic focusing flow cytometry. Non tumor-bearing aged HuCD34NCG mice (27 weeks post-engraftment) were sampled biweekly over ten weeks for lymphoma immunophenotyping.ResultsBoth tumor-bearing models showed significant anti-hPD-1 and anti-hCTLA-4 responses, but combination therapy only enhanced growth reduction significantly in MDA-MB-436 tumors. Flow cytometric analysis identified viable human leukocytes in tumor and spleen at study termination. These tumor-infiltrating lymphocytes (TIL) and splenocytes from surviving COLO 205 and MDA-MB-436 mice consisted of a total T-cell phenotype (CD3+) with proliferating (Ki67+), CD4+, CD8+ and Treg subsets. Additionally, myeloid cells (CD11b+, CD11c+) and M1/M2 macrophages were detected within these infiltrates. Splenic and tumor-infiltrating T-cells readily secreted human cytokines (IFN-γ, IL-2, TNF-α) and granzyme B upon ex vivo activation exhibiting polyfunctional and cytotoxic capabilities in all treatment groups. Baseline murine and human cytokine levels were distinguished in plasma from aging, non tumor-bearing HuCD34NCGs. Their phenotypes also showed no conclusive indicators of abnormal blood cells developing or graft failure.ConclusionsBreast and colon tumor cell-line derived models were established in HuCD34NCG mice. Standard checkpoint inhibitor treatment promoted human T-cell infiltration into tumor microenvironments inhibiting growth. These results demonstrate that HuCD34NCG are a robust and relevant host for various human cell xenotransplants to advance preclinical immuno-oncology drug development.Ethics ApprovalAnimal studies were executed in compliance with local Charles River IACUC guidelines, IACUC number I-033.


Author(s):  
Marina Kochiyeva

Data on modern methodological approaches that are used in screening for cancer are summarized. General principles of organizing screening studies are examined from the perspective of evidence-based medicine, target population, research methods, and effectiveness of the implemented screening programs for breast cancer, cervical cancer, and colon cancer are determined.


2019 ◽  
Vol 9 (4) ◽  
pp. 341-348 ◽  
Author(s):  
Ibrahim Awad Mohammed ◽  
Muhammad Nadeem Akhtar ◽  
Foo Jhi Biau ◽  
Yin Sim Tor ◽  
Seema Zareen ◽  
...  

<P>Background: Breast cancer and human colon cancer are the most common types of cancer in females and males, respectively. Breast cancer is the most common type of cancer after lung and colon cancers. Natural products are an important source for drug discovery. Boesenbergia rotunda (L.) Mansf. is commonly known as finger root, belonging to the Zingiberaceae family. </P><P> Objective: The aim of this study to isolate some natural compounds from the rhizomes of B. rotunda (L.) Mansf., and to investigate their cytotoxicity against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. </P><P> Methods: The dried rhizomes of B. rotunda were extracted with methanol. The methanolic extract was further used for solvent-solvent extraction. Bioassay-guided extraction and isolation of the rhizomes of the B. rotunda exhibited cytotoxic properties of hexane and dichloromethane fractions. </P><P> Results: Six major chemical constituents, pinostrobin (1), pinostrobin chalcone (2), cardamonin (3), 4,5-dihydrokawain (4), pinocembrin (5), and alpinetin (6) were isolated from the rhizomes of the B. rotunda. All the chemical constituents were screened against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. The compound cardamonin (3) (IC50 = 5.62&#177;0.61 and 4.44&#177;0.66 &#181;g/mL) and pinostrobin chalcone (2), (IC50 = 20.42&#177;2.23 and 22.51&#177;0.42 μg/mL) were found to be potent natural cytotoxic compounds against MDA-MB-231 and HT-29 colon cancer cell lines, respectively. </P><P> Conclusion: Cardamonin (3) and pinostrobin chalcone (2) were found to be the most potential natural compounds against breast cancer cell line MDA-MB-231 and colon cancer HT-29 cell line.</P>


Author(s):  
Mohammad Reza. Shiran ◽  
Davar Amani ◽  
Abolghasem Ajami ◽  
Mahshad Jalalpourroodsari ◽  
Maghsoud Khalizadeh ◽  
...  

Abstract Objectives Breast cancer is a common malignant tumor in women with limited treatment options and multiple side effects. Today, the anti-cancer properties of natural compounds have attracted widespread attention from researchers worldwide. Methods In this study, we treated 4T1 tumor-bearing Balb/c mice with intraperitoneal injection of Auraptene, paraffin oil, and saline as two control groups. Body weight and tumor volume were measured before and after treatment. Hematoxylin and eosin (H & E) staining and immunohistochemistry of Ki-67 were used as markers of proliferation. In addition, ELISA assays were performed to assess serum IFN-γ and IL-4 levels. Results There was no significant change in body weight in all animal groups before and after treatment. 10 days after the last treatment, Auraptene showed its anti-cancer effect, which was confirmed by the smaller tumor volume and H & E staining. In addition, Ki-67 expression levels were significantly reduced in tumor samples from the Auraptene-treated group compared to the paraffin oil and saline-treated groups. In addition, in tumor-bearing and normal mice receiving Auraptene treatment, IL-4 serum production levels were reduced, while serum levels of IFN-γ were significantly up-regulated in tumor-bearing mice after Auraptene treatment. Conclusions In the case of inhibition of tumor volume and Ki-67 proliferation markers, Auraptene can effectively inhibit tumor growth in breast cancer animal models. In addition, it might increases Th1 and CD8 + T cell responses after reducing IL-4 serum levels and IFN-γ upregulation, respectively. However, further research is needed to clarify its mechanism of action.


2021 ◽  
Vol 14 (3) ◽  
pp. 254
Author(s):  
Afnan H. El-Gowily ◽  
Samah A. Loutfy ◽  
Ehab M. M. Ali ◽  
Tarek M. Mohamed ◽  
Mohammed A. Mansour

Cancer is a complex devastating disease with enormous treatment challenges, including chemo- and radiotherapeutic resistance. Combination therapy demonstrated a promising strategy to target hard-to-treat cancers and sensitize cancer cells to conventional anti-cancer drugs such as doxorubicin. This study aimed to establish molecular profiling and therapeutic efficacy assessment of chloroquine and/or tioconazole (TIC) combination with doxorubicin (DOX) as anew combination model in MCF-7 breast cancer. The drugs are tested against apoptotic/autophagic pathways and related redox status. Molecular docking revealed that chloroquine (CQ) and TIC could be potential PI3K and ATG4B pathway inhibitors. Combination therapy significantly inhibited cancer cell viability, PI3K/AkT/mTOR pathway, and tumor-supporting autophagic flux, however, induced apoptotic pathways and altered nuclear genotoxic feature. Our data revealed that the combination cocktail therapy markedly inhibited tumor proliferation marker (KI-67) and cell growth, along with the accumulation of autophagosomes and elevation of LC3-II and p62 levels indicated autophagic flux blockage and increased apoptosis. Additionally, CQ and/or TIC combination therapy with DOX exerts its activity on the redox balance of cancer cells mediated ROS-dependent apoptosis induction achieved by GPX3 suppression. Besides, Autophagy inhibition causes moderately upregulation in ATGs 5,7 redundant proteins strengthened combinations induced apoptosis, whereas inhibition of PI3K/AKT/mTOR pathway with Beclin-1 upregulation leading to cytodestructive autophagy with overcome drug resistance effectively in curing cancer. Notably, the tumor growth inhibition and various antioxidant effects were observed in vivo. These results suggest CQ and/or TIC combination with DOX could act as effective cocktail therapy targeting autophagy and PI3K/AKT/mTOR pathways in MCF-7 breast cancer cells and hence, sensitizes cancer cells to doxorubicin treatment and combat its toxicity.


1999 ◽  
Vol 8 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Claudia G. Berman ◽  
Christopher Goscin ◽  
J. Jennifer Kim ◽  
Marcia S. Miller

Sign in / Sign up

Export Citation Format

Share Document