Expression of P-glycoprotein, encoded by MDR 1 gene, a metabolically active efflux pump in murine mast cells

1996 ◽  
Vol 101 (2) ◽  
pp. 241-246 ◽  
Author(s):  
David Wein ◽  
Sudhir Gupta
2000 ◽  
Vol 148 (5) ◽  
pp. 863-870 ◽  
Author(s):  
Yu Chen ◽  
Sanford M. Simon

While P-glycoprotein (Pgp) is the most studied protein involved in resistance to anti-cancer drugs, its mechanism of action is still under debate. Studies of Pgp have used cell lines selected with chemotherapeutics which may have developed many mechanisms of resistance. To eliminate the confounding effects of drug selection on understanding the action of Pgp, we studied cells transiently transfected with a Pgp-green fluorescent protein (GFP) fusion protein. This method generated a mixed population of unselected cells with a wide range of Pgp-GFP expression levels and allowed simultaneous measurements of Pgp level and drug accumulation in living cells. The results showed that Pgp-GFP expression was inversely related to the accumulation of chemotherapeutic drugs. The reduction in drug concentration was reversed by agents that block multiple drug resistance (MDR) and by the UIC2 anti-Pgp antibody. Quantitative analysis revealed an inverse linear relationship between the fluorescence of Pgp-GFP and MDR dyes. This suggests that Pgp levels alone limit drug accumulation by active efflux; cooperativity between enzyme, substrate, or inhibitor molecules is not required. Additionally, Pgp-GFP expression did not change cellular pH. Our study demonstrates the value of using GFP fusion proteins for quantitative biochemistry in living cells.


1996 ◽  
Vol 320 (2) ◽  
pp. 421-428 ◽  
Author(s):  
Frances J. SHAROM ◽  
Xiaohong YU ◽  
Giulio DiDIODATO ◽  
Joseph W. K. CHU

P-Glycoprotein functions as an ATP-driven active efflux pump for many natural products and chemotherapeutic drugs. Hydrophobic peptides have been shown to block drug uptake by P-glycoprotein, indicating that they might be transport substrates. The present study examines the interaction of the synthetic peptide series NAc-LnY-amide with the multidrug transporter. Several peptides in this series caused up to 3.5-fold enhancement of colchicine accumulation in membrane vesicles from multidrug resistant (MDR) cells, which suggests the existence of novel interactions between the binding sites for peptides and drug. Peptides did not stimulate vinblastine transport, which was inhibited as expected for competing substrates. These peptides displayed modest stimulatory effects on the ATPase activity of P-glycoprotein. None blocked azidopine photoaffinity labelling, showing that they probably occupy a binding site separate from that for the drug. Studies with 125I-labelled NAc-LLY-amide showed that it was transported by P-glycoprotein in both membrane vesicles and reconstituted proteoliposomes. Uptake of the peptide was rapid, saturable, osmotically sensitive and occurred against a concentration gradient. The enhancing effect of NAc-LLY-amide on colchicine transport was reciprocated, i.e. colchicine greatly increased the transport of labelled peptide by P-glycoprotein. Peptide transport was also modulated, both positively and negatively, by other MDR spectrum drugs. It is concluded that linear hydrophobic peptides are indeed transported by P-glycoprotein, and some have interactions with drug substrates that result in mutual stimulation of transport.


2017 ◽  
Vol 13 (4) ◽  
pp. 1538-1546 ◽  
Author(s):  
Tingting Zhang ◽  
Min Wang ◽  
Yixin Xie ◽  
Xianping Li ◽  
Zhihui Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document