High saturation magnetic induction amorphous Fe-Si-B alloys with improved thermal stability by addition of tin

1994 ◽  
Vol 133 (1-3) ◽  
pp. 273-275 ◽  
Author(s):  
Masahiro Fujikura ◽  
Toshio Yamada ◽  
Takashi Sato
2018 ◽  
Vol 913 ◽  
pp. 653-660
Author(s):  
Qing Liu ◽  
Zheng Yang Chen ◽  
Shu Feng Yang ◽  
Jing She Li

Pure iron with C/Si > 1 and C/Si < 1 was smelted by a vacuum arc furnace, and the grain size was controlled through different heat treatments. The microstructure of pure iron was observed by using an optical microscope, and the grain size was subsequently measured and calculated. Finally, the coercive force, saturation magnetic induction, and permeability were measured using a vibrating sample magnetometer. The results indicate that the coercive force increases with decreases in the average grain diagonal size. An increase in the uniformity of the grain increases the saturation magnetic induction. The permeability depends on the average grain diagonal size and the uniformity of the grain as well as the chemical composition of pure iron.


2011 ◽  
Vol 687 ◽  
pp. 122-128
Author(s):  
Y. S. Deng ◽  
Xian Shi Fang ◽  
Feng Ye ◽  
Y. Qiao ◽  
Jun Pin Lin ◽  
...  

Directional solidification technique was employed to produce Fe-6.5wt.%Si alloy with coarse columnar-grain structure, which was almost single crystal. The sectional diameters of columnar grains range from 2.2 to 6.8 mm. The saturation magnetic induction was 2.39 T. In this work, grain growth started from either a Fe-6.5wt.%Si crystal which was not melted at bottom of the specimen or a freely nucleated Fe-6.5wt.%Si crystal as the specimen was completely melted. It was found that the starting situation of the directional solidification plays an important role in the crystal orientation, and hence in properties.


2010 ◽  
Vol 455 ◽  
pp. 174-180 ◽  
Author(s):  
Wen Hui Li ◽  
Hong Ling Chen ◽  
Sheng Qiang Yang ◽  
Shi Chun Yang

As a kind of precise surface finishing technology, magnetic abrasive finishing has wide application, low cost, high efficiency, good effects, and other advantages. Magnetic induction intensity is one main parameter affecting finishing effect and efficiency of magnetic abrasive finishing. Saturation magnetic induction intensity for different magnetic abrasives is defined through test device designed by ourselves. Affecting rules of saturation magnetic induction intensity is discussed by experiments, which provide basis for parameters selection and practical application of magnetic abrasive finishing.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


2020 ◽  
Author(s):  
Feng Xiao ◽  
Bin Yao ◽  
Pavankumar Challa Sasi ◽  
Svetlana Golovko ◽  
Dana Soli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document