Cloning and sequence of a gene encoding macrotetrolide antibiotic resistance from Streptomyces griseus

Gene ◽  
1992 ◽  
Vol 112 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Richard Plater ◽  
John A. Robinson
Author(s):  
Dorin TIBULCA ◽  
Mirela JIMBOREAN ◽  
Claudiu Dan SALAGEAN

Streptomycin consists of three components, which are linked together by glycoside bonds, and it belongs to the group of the aminoglycoside antibiotics. Streptomycin is naturally produced by actinobacterium Streptomyces griseus. Therapeutically it is used in the case of streptococcal and enterococcal enteritis. Because of its side effects it is rarely used in human treatment, but has an application in the veterinary area. After the treatment of mastitis in breeding animals, increased values of streptomycin were also recorded in liver, kidney, muscle and milk. Presence of Streptomycins in milk has hygienic and industrial implications. Concerning the industrial aspect the Streptomycin residues are inhibitors for proliferation of the lactic microflora. In terms of hygiene, streptomycin can induce the antibiotic resistance phenomenon


2004 ◽  
Vol 133 (1) ◽  
pp. 81-86 ◽  
Author(s):  
C. S. TORO ◽  
M. FARFÁN ◽  
I. CONTRERAS ◽  
O. FLORES ◽  
N. NAVARRO ◽  
...  

A total of 162 clinical isolates of Shigella collected from children in a semi-rural community of Chile were examined for the presence of genetic determinants of resistance to ampicillin, chloramphenicol, tetracycline, and trimethoprim. Ampicillin resistance was most frequently associated with the presence of blaOXA in S. flexneri and with blaTEM in S. sonnei. The blaOXA gene but not blaTEM was located in class 1 integrons. The dhfrIa gene encoding for resistance to trimethoprim was associated to class 2 integrons and detected exclusively in S. flexneri, whereas dhfrIIIc was found in all S. sonnei strains and in 10% of the S. flexneri isolates. Cat, coding for choramphenicol resistance, and blaOXA genes were located in the chromosome in all cases, whereas tetA gene, coding for tetracycline resistance, and blaTEM, dhfrIa and dhfrIIIc genes were found either in the chromosome or in conjugative plasmids. Our results show a heterogenous distribution of antibiotic-resistance determinants between S. flexneri and S. sonnei.


2009 ◽  
Vol 53 (10) ◽  
pp. 4240-4246 ◽  
Author(s):  
Cesar A. Arias ◽  
Diana Panesso ◽  
Kavindra V. Singh ◽  
Louis B. Rice ◽  
Barbara E. Murray

ABSTRACT The hylEfm gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hylEfm -containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hylEfm gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hylEfm , whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hylEfm -positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hylEfm plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.


2005 ◽  
Vol 68 (10) ◽  
pp. 2022-2029 ◽  
Author(s):  
SHIN-HEE KIM ◽  
CHENG-I WEI ◽  
YWH-MIN TZOU ◽  
HAEJUNG AN

Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of β-lactamase in the K. pneumoniae isolates played a major role in the resistance to β-lactam agents. Most isolates (96%) possessed blaSHV-1. Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) β-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Céline Loot ◽  
Aleksandra Nivina ◽  
Jean Cury ◽  
José Antonio Escudero ◽  
Magaly Ducos-Galand ◽  
...  

ABSTRACT Integrons ensure a rapid and “on demand” response to environmental stresses driving bacterial adaptation. They are able to capture, store, and reorder functional gene cassettes due to site-specific recombination catalyzed by their integrase. Integrons can be either sedentary and chromosomally located or mobile when they are associated with transposons and plasmids. They are respectively called sedentary chromosomal integrons (SCIs) and mobile integrons (MIs). MIs are key players in the dissemination of antibiotic resistance genes. Here, we used in silico and in vivo approaches to study cassette excision dynamics in MIs and SCIs. We show that the orientation of cassette arrays relative to replication influences attC site folding and cassette excision by placing the recombinogenic strands of attC sites on either the leading or lagging strand template. We also demonstrate that stability of attC sites and their propensity to form recombinogenic structures also regulate cassette excision. We observe that cassette excision dynamics driven by these factors differ between MIs and SCIs. Cassettes with high excision rates are more commonly found on MIs, which favors their dissemination relative to SCIs. This is especially true for SCIs carried in the Vibrio genus, where maintenance of large cassette arrays and vertical transmission are crucial to serve as a reservoir of adaptive functions. These results expand the repertoire of known processes regulating integron recombination that were previously established and demonstrate that, in terms of cassette dynamics, a subtle trade-off between evolvability and genetic capacitance has been established in bacteria. IMPORTANCE The integron system confers upon bacteria a rapid adaptation capability in changing environments. Specifically, integrons are involved in the continuous emergence of bacteria resistant to almost all antibiotic treatments. The international situation is critical, and in 2050, the annual number of deaths caused by multiresistant bacteria could reach 10 million, exceeding the incidence of deaths related to cancer. It is crucial to increase our understanding of antibiotic resistance dissemination and therefore integron recombination dynamics to find new approaches to cope with the worldwide problem of multiresistance. Here, we studied the dynamics of recombination and dissemination of gene encoding cassettes carried on integrons. By combining in silico and in vivo analyses, we show that cassette excision is highly regulated by replication and by the intrinsic properties of cassette recombination sites. We also demonstrated differences in the dynamics of cassette recombination between mobile and sedentary chromosomal integrons (MIs and SCIs). For MIs, a high cassette recombination rate is favored and timed to conditions when generating diversity (upon which selection can act) allows for a rapid response to environmental conditions and stresses. In contrast, for SCIs, cassette excisions are less frequent, limiting cassette loss and ensuring a large pool of cassettes. We therefore confirm a role of SCIs as reservoirs of adaptive functions and demonstrate that the remarkable adaptive success of integron recombination system is due to its intricate regulation. IMPORTANCE The integron system confers upon bacteria a rapid adaptation capability in changing environments. Specifically, integrons are involved in the continuous emergence of bacteria resistant to almost all antibiotic treatments. The international situation is critical, and in 2050, the annual number of deaths caused by multiresistant bacteria could reach 10 million, exceeding the incidence of deaths related to cancer. It is crucial to increase our understanding of antibiotic resistance dissemination and therefore integron recombination dynamics to find new approaches to cope with the worldwide problem of multiresistance. Here, we studied the dynamics of recombination and dissemination of gene encoding cassettes carried on integrons. By combining in silico and in vivo analyses, we show that cassette excision is highly regulated by replication and by the intrinsic properties of cassette recombination sites. We also demonstrated differences in the dynamics of cassette recombination between mobile and sedentary chromosomal integrons (MIs and SCIs). For MIs, a high cassette recombination rate is favored and timed to conditions when generating diversity (upon which selection can act) allows for a rapid response to environmental conditions and stresses. In contrast, for SCIs, cassette excisions are less frequent, limiting cassette loss and ensuring a large pool of cassettes. We therefore confirm a role of SCIs as reservoirs of adaptive functions and demonstrate that the remarkable adaptive success of integron recombination system is due to its intricate regulation.


2011 ◽  
Vol 60 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Ryszard Koczura ◽  
Joanna Mokracka ◽  
Sylwia Krzymińska ◽  
Adam Kaznowski

This study examined Klebsiella mobilis isolates cultured from clinical specimens for virulence-associated properties and antibiotic resistance. The strains produced a number of siderophores, including enterobactin, aerobactin and yersiniabactin. All isolates were able to adhere to and invade epithelial cells. They had cytotoxic activity, which caused destruction of human laryngeal epithelial HEp-2 cells and evoked lysis of murine macrophage J774 cells. Analyses of HEp-2 and J774 cellular morphology and DNA fragmentation in the cells showed features typical of cells undergoing apoptosis. Some K. mobilis strains harboured class 1 integrons carrying the aadA1 gene encoding an aminoglycoside adenyltransferase.


2001 ◽  
Vol 67 (4) ◽  
pp. 1558-1564 ◽  
Author(s):  
Shaohua Zhao ◽  
David G. White ◽  
Beilei Ge ◽  
Sherry Ayers ◽  
Sharon Friedman ◽  
...  

ABSTRACT A total of 50 isolates of Shiga toxin-producing Escherichia coli (STEC), including 29 O157:H7 and 21 non-O157 STEC strains, were analyzed for antimicrobial susceptibilities and the presence of class 1 integrons. Seventy-eight (n = 39) percent of the isolates exhibited resistance to two or more antimicrobial classes. Multiple resistance to streptomycin, sulfamethoxazole, and tetracycline was most often observed. Class 1 integrons were identified among nine STEC isolates, including serotypes O157:H7, O111:H11, O111:H8, O111:NM, O103:H2, O45:H2, O26:H11, and O5:NM. The majority of the amplified integron fragments were 1 kb in size with the exception of one E. coli O111:H8 isolate which possessed a 2-kb amplicon. DNA sequence analysis revealed that the integrons identified within the O111:H11, O111:NM, O45:H2, and O26:H11 isolates contained the aadA gene encoding resistance to streptomycin and spectinomycin. Integrons identified among the O157:H7 and O103:H2 isolates also possessed a similaraadA gene. However, DNA sequencing revealed only 86 and 88% homology, respectively. The 2-kb integron of the E. coli O111:H8 isolate contained three genes, dfrXII,aadA2, and a gene of unknown function, orfF, which were 86, 100, and 100% homologous, respectively, to previously reported gene cassettes identified in integrons found inCitrobacter freundii and Klebsiella pneumoniae. Furthermore, integrons identified among the O157:H7 and O111:NM strains were transferable via conjugation to another strain of E. coli O157:H7 and to several strains of Hafnia alvei. To our knowledge, this is the first report of integrons and antibiotic resistance gene cassettes in STEC, in particular E. coliO157:H7.


Sign in / Sign up

Export Citation Format

Share Document