scholarly journals Cotransfer of Antibiotic Resistance Genes and a hylEfm-Containing Virulence Plasmid in Enterococcus faecium

2009 ◽  
Vol 53 (10) ◽  
pp. 4240-4246 ◽  
Author(s):  
Cesar A. Arias ◽  
Diana Panesso ◽  
Kavindra V. Singh ◽  
Louis B. Rice ◽  
Barbara E. Murray

ABSTRACT The hylEfm gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hylEfm -containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hylEfm gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hylEfm , whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hylEfm -positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hylEfm plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 378
Author(s):  
Inka Marie Willms ◽  
Maja Grote ◽  
Melissa Kocatürk ◽  
Lukas Singhoff ◽  
Alina Andrea Kraft ◽  
...  

Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.


2009 ◽  
Vol 76 (4) ◽  
pp. 1095-1102 ◽  
Author(s):  
Nelly Dubarry ◽  
Wenli Du ◽  
David Lane ◽  
Franck Pasta

ABSTRACT The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sally L. Bornbusch ◽  
Christine M. Drea

The overuse of man-made antibiotics has facilitated the global propagation of antibiotic resistance genes in animals, across natural and anthropogenically disturbed environments. Although antibiotic treatment is the most well-studied route by which resistance genes can develop and spread within host-associated microbiota, resistomes also can be acquired or enriched via more indirect routes, such as via transmission between hosts or via contact with antibiotic-contaminated matter within the environment. Relatively little is known about the impacts of anthropogenic disturbance on reservoirs of resistance genes in wildlife and their environments. We therefore tested for (a) antibiotic resistance genes in primate hosts experiencing different severities and types of anthropogenic disturbance (i.e., non-wildlife animal presence, human presence, direct human contact, and antibiotic treatment), and (b) covariation between host-associated and environmental resistomes. We used shotgun metagenomic sequencing of ring-tailed lemur (Lemur catta) gut resistomes and associated soil resistomes sampled from up to 10 sites: seven in the wilderness of Madagascar and three in captivity in Madagascar or the United States. We found that, compared to wild lemurs, captive lemurs harbored greater abundances of resistance genes, but not necessarily more diverse resistomes. Abundances of resistance genes were positively correlated with our assessments of anthropogenic disturbance, a pattern that was robust across all ten lemur populations. The composition of lemur resistomes was site-specific and the types of resistance genes reflected antibiotic usage in the country of origin, such as vancomycin use in Madagascar. We found support for multiple routes of ARG enrichment (e.g., via human contact, antibiotic treatment, and environmental acquisition) that differed across lemur populations, but could result in similar degrees of enrichment. Soil resistomes varied across natural habitats in Madagascar and, at sites with greater anthropogenic disturbance, lemurs and soil resistomes covaried. As one of the broadest, single-species investigations of wildlife resistomes to date, we show that the transmission and enrichment of antibiotic resistance genes varies across environments, thereby adding to the mounting evidence that the resistance crisis extends outside of traditional clinical settings.


2019 ◽  
Vol 71 (2) ◽  
pp. 419-421
Author(s):  
Quentin Le Bastard ◽  
Pajau Vangay ◽  
Eric Batard ◽  
Dan Knights ◽  
Emmanuel Montassier

Abstract Little is known about the effect of human migration on gut microbiome antibiotic resistance gene (ARG) carriage. Using deep shotgun stool metagenomics analysis, we found a rapid increase in gut microbiome ARG richness and abundance in women from 2 independent ethnic groups relocating from Thailand to the United States.


2005 ◽  
Vol 68 (10) ◽  
pp. 2022-2029 ◽  
Author(s):  
SHIN-HEE KIM ◽  
CHENG-I WEI ◽  
YWH-MIN TZOU ◽  
HAEJUNG AN

Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of β-lactamase in the K. pneumoniae isolates played a major role in the resistance to β-lactam agents. Most isolates (96%) possessed blaSHV-1. Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) β-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products.


2014 ◽  
Vol 58 (12) ◽  
pp. 7367-7374 ◽  
Author(s):  
Antony T. Vincent ◽  
Mélanie V. Trudel ◽  
Valérie E. Paquet ◽  
Brian Boyle ◽  
Katherine H. Tanaka ◽  
...  

ABSTRACTThe ubiquitous water-borne Gram-negative bacteriumAeromonas salmonicidasubsp.salmonicidais the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids inA. salmonicidasubsp.salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other thanA. salmonicidasubsp.salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist inA. salmonicidasubsp.salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed thatA. salmonicidasubsp.salmonicidaharbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Veronica Lazăr ◽  
Irina Gheorghe ◽  
Carmen Curutiu ◽  
Ioana Savin ◽  
Florica Marinescu ◽  
...  

Abstract Background The present study aims the characterization of antibiotic resistance phenotypes and encoding genes in bacterial strains isolated from some Romanian aquatic fishery lowland salted lakes. Material/Methods This study was conducted on 44 bacterial strains, mainly belonging to species used as microbiological indicators of fecal pollution isolated from four natural fishery lakes. All strains were tested for their antibiotic susceptibility by disk diffusion method. Simplex and multiplex PCR were performed to identify the β-lactams antibiotic resistance genes (blaNMD, blaOXA−48, blaVIM, blaIMP, blaCTX−M, blaTEM), sulfonamides (Sul1, Sul2), tetracyclines (TetA, TetB, TetC, TetD, TetM), aminoglycosides (aac3Ia), vancomycin (VanA, VanB, VanC), macrolides (ermA, ermB, ermC) as well as the plasmid-mediated quinolone resistance (PMQR) markers (QnrA, QnrB, QnrS), and class 1 integrons (Int1, drfA1-aadA1). Results The Enterococcus spp. isolates exhibited phenotypic resistance to vancomycin (35 %) and macrolides (erythromycin) (75 %); from the vancomycin – resistant strains, 5 % harboured VanA (E. faecalis), while the erythromycin resistant isolates were positive for the ermA gene (E. faecalis − 10 %, E. faecium − 5 %). The Gram- negative rods (GNR) exhibited a high level of resistance to β-lactams: cefuroxime (63 %), cefazolin (42 %), ceftriaxone (8 %), ceftazidime and aztreonam (4 % each). The genetic determinants for beta-lactam resistance were represented by blaCTX−M−like (33 %), blaNDM−like and blaIMP−like (8.33 %) genes. The resistance to non-β-lactam antibiotics was ascertained to the following genes: quinolones (QnrS − 4.16 %); sulfonamides (Sul1–75 %, Sul2–4.16 %); aminoglycosides (aac3Ia − 4.16 %); tetracyclines (tetA – 25 %, tetC − 15 %). The integrase gene was found in more than 50 % of the studied strains (58.33 %). Conclusions The cultivable aquatic microbiota from fishery lakes is dominated by enterococci and Enterobacterales strains. The GNR strains exhibited high levels of β-lactam resistance mediated by extended spectrum beta-lactamases and metallo-β-lactamases. The Enterococcus sp. isolates were highly resistant to macrolides and vancomycin. The high level and diversity of resistance markers, correlated with a high frequency of integrons is suggesting that this environment could act as an important reservoir of antibiotic resistance genes with a great probability to be horizontally transmitted to other associated species from the aquatic sediments microbiota, raising the potential zoonotic risk for fish consumers.


2013 ◽  
Vol 57 (11) ◽  
pp. 5398-5405 ◽  
Author(s):  
Yuansha Chen ◽  
Sampa Mukherjee ◽  
Maria Hoffmann ◽  
Michael L Kotewicz ◽  
Shenia Young ◽  
...  

ABSTRACTAminoglycoside resistance inCampylobacterhas been routinely monitored in the United States in clinical isolates since 1996 and in retail meats since 2002. Gentamicin resistance first appeared in a single human isolate ofCampylobacter coliin 2000 and in a single chicken meat isolate in 2007, after which it increased rapidly to account for 11.3% of human isolates and 12.5% of retail isolates in 2010. Pulsed-field gel electrophoresis analysis indicated that gentamicin-resistantC. coliisolates from retail meat were clonal. We sequenced the genomes of two strains of this clone using a next-generation sequencing technique in order to investigate the genetic basis for the resistance. The gaps of one strain were closed using optical mapping and Sanger sequencing, and this is the first completed genome ofC. coli. The two genomes are highly similar to each other. A self-transmissible plasmid carrying multiple antibiotic resistance genes was revealed within both genomes, carrying genes encoding resistance to gentamicin, kanamycin, streptomycin, streptothricin, and tetracycline. Bioinformatics analysis and experimental results showed that gentamicin resistance was due to a phosphotransferase gene,aph(2″)-Ig, not described previously. The phylogenetic relationship of this newly emerged clone to otherCampylobacterspp. was determined by whole-genome single nucleotide polymorphisms (SNPs), which showed that it clustered with the other poultry isolates and was separated from isolates from livestock.


2020 ◽  
Vol 8 (10) ◽  
pp. 1522
Author(s):  
Pamela Afouda ◽  
Grégory Dubourg ◽  
Anthony Levasseur ◽  
Pierre-Edouard Fournier ◽  
Jeremy Delerce ◽  
...  

Long considered to be a consequence of human antibiotics use by deduction, antibiotic resistance mechanisms appear to be in fact a much older phenomenon as antibiotic resistance genes have previously been detected from millions of year-old permafrost samples. As these specimens guarantee the viability of archaic bacteria, we herein propose to apply the culturomics approach to recover the bacterial content of a Siberian permafrost sample dated, using the in situ-produced cosmogenic nuclide chlorine36 (36Cl), at 2.7 million years to study the dynamics of bacterial evolution in an evolutionary perspective. As a result, we cultured and sequenced the genomes of 28 ancient bacterial species including one new species. To perform genome comparison between permafrost strains and modern isolates we selected 7 of these species (i.e., Achromobacter insolitus, Bacillus idriensis, Brevundimonas aurantiaca, Janibacter melonis, Kocuria rhizophila, Microbacterium hydrocarbonoxydans and Paracoccus yeei). We observed a high level of variability in genomic content with a percentage of shared genes in the core genomes ranging from 21.23% to 55.59%. In addition, the Single Nucleotide Polymorphism (SNP) comparison between permafrost and modern strains for the same species did not allow a dating of ancient strains based on genomic content. There were no significant differences in antibiotic resistance profiles between modern and ancient isolates of each species. Acquired resistance to antibiotics was phenotypically detected in all gram-negative bacterial species recovered from permafrost, with a significant number of genes coding for antibiotic resistance detected. Taken together, these findings confirm previously obtained data that antibiotic resistance predates humanity as most of antimicrobial agents are natural weapons used in inter-microbial conflicts within the biosphere.


Sign in / Sign up

Export Citation Format

Share Document