Micromachined Pressure Sensors on Optical Fiber Tip

2009 ◽  
Vol 74 ◽  
pp. 149-152
Author(s):  
X.M. Zhang ◽  
M. Yu ◽  
Silas Nesson ◽  
H. Bae ◽  
A. Christian ◽  
...  

This paper reports the development of a miniature pressure sensor on the optical fiber tip for in vitro measurements of rodent intradiscal pressure. The sensor element is biocompatible and can be fabricated by simple, batch-fabrication methods in a non-cleanroom environment with good device-to-device uniformity. The fabricated sensor element has an outer diameter of only 366 μm, which is small enough to be inserted into the rodent discs without disrupting the structure or altering the intradiscal pressures. In the calibration, the sensor element exhibits a linear response to the applied pressure over the range of 0 - 70 kPa, with a sensitivity of 0.0206 μm/kPa and a resolution of 0.17 kPa.

2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


2013 ◽  
Vol 647 ◽  
pp. 315-320 ◽  
Author(s):  
Pradeep Kumar Rathore ◽  
Brishbhan Singh Panwar

This paper reports on the design and optimization of current mirror MOSFET embedded pressure sensor. A current mirror circuit with an output current of 1 mA integrated with a pressure sensing n-channel MOSFET has been designed using standard 5 µm CMOS technology. The channel region of the pressure sensing MOSFET forms the flexible diaphragm as well as the strain sensing element. The piezoresistive effect in MOSFET has been exploited for the calculation of strain induced carrier mobility variation. The output transistor of the current mirror forms the active pressure sensing MOSFET which produces a change in its drain current as a result of altered channel mobility under externally applied pressure. COMSOL Multiphysics is utilized for the simulation of pressure sensing structure and Tspice is employed to evaluate the characteristics of the current mirror pressure sensing circuit. Simulation results show that the pressure sensor has a sensitivity of 10.01 mV/MPa. The sensing structure has been optimized through simulation for enhancing the sensor sensitivity to 276.65 mV/MPa. These CMOS-MEMS based pressure sensors integrated with signal processing circuitry on the same chip can be used for healthcare and biomedical applications.


2017 ◽  
Vol 31 (05) ◽  
pp. 1750046
Author(s):  
Wu Zhou ◽  
Dong Wang ◽  
Huijun Yu ◽  
Bei Peng

Rectangular diaphragm is commonly used as a pressure sensitive component in MEMS pressure sensors. Its deformation under applied pressure directly determines the performance of micro-devices, accurately acquiring the pressure–deflection relationship, therefore, plays a significant role in pressure sensor design. This paper analyzes the deflection of an isotropic rectangular diaphragm under combined effects of loads. The model is regarded as a clamped plate with full surface uniform load and partially uniform load applied on its opposite sides. The full surface uniform load stands for the external measured pressure. The partial load is used to approximate the opposite reaction of the silicon island which is planted on the diaphragm to amplify the deformation displacement, thus to improve the sensitivity of the pressure sensor. Superposition method is proposed to calculate the diaphragm deflections. This method considers separately the actions of loads applied on the simple supported plate and moments distributed on edges. Considering the boundary condition of all edges clamped, the moments are constructed to eliminate the boundary rotations caused by lateral load. The diaphragm’s deflection is computed by superposing deflections which produced by loads applied on the simple supported plate and moments distributed on edges. This method provides higher calculation accuracy than Galerkin variational method, and it is used to analyze the influence factors of the diaphragm’s deflection, includes aspect ratio, thickness and the applied force area of the diaphragm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1320
Author(s):  
Tamil Selvan Ramadoss ◽  
Yuya Ishii ◽  
Amutha Chinnappan ◽  
Marcelo H. Ang ◽  
Seeram Ramakrishna

Tactile sensors are widely used by the robotics industries over decades to measure force or pressure produced by external stimuli. Piezoelectric-based pressure sensors have intensively been investigated as promising candidates for tactile sensing applications. In contrast, piezoelectric-based pressure sensors are expensive due to their high cost of manufacturing and expensive base materials. Recently, an effect similar to the piezoelectric effect has been identified in non-piezoelectric polymers such as poly(d,l-lactic acid (PDLLA), poly(methyl methacrylate) (PMMA) and polystyrene. Hence investigations were conducted on alternative materials to find their suitability. In this article, we used inexpensive atactic polystyrene (aPS) as the base polymer and fabricated functional fibers using an electrospinning method. Fiber morphologies were studied using a field-emission scanning electron microscope and proposed a unique pressure sensor fabrication method. A fabricated pressure sensor was subjected to different pressures and corresponding electrical and mechanical characteristics were analyzed. An open circuit voltage of 3.1 V was generated at 19.9 kPa applied pressure, followed by an integral output charge (ΔQ), which was measured to calculate the average apparent piezoelectric constant dapp and was found to be 12.9 ± 1.8 pC N−1. A fabricated pressure sensor was attached to a commercially available robotic arm to mimic the tactile sensing.


Author(s):  
Ahmad Dagamseh ◽  
Qais Al-Bataineh ◽  
Zaid Al-Bataineh ◽  
Nermeen S. Daoud ◽  
Ahmad Alsaad ◽  
...  

In this paper, mathematical modeling and simulation of a MEMS-based clamped square-shape membrane for capacitive pressure sensors have been performed. Three types of membrane materials were investigated (i.e. Zinc Oxide (ZnO), Zinc Sulfide (ZnS) and Aluminum Nitride (AlN)). Various performance parameters such as capacitance changes, deflection, nonlinearity, the sensitivity of the membrane structure for different materials and film-thicknesses have been considered using the Finite Element Method (FEM) and analytically determined using the FORTRAN environment. The simulation model outperforms in terms of the effective capacitance value. The results show that the membrane deflection is linearly related to the applied pressure. The ZnS membrane provides a capacitance of 0.023 pico-Farad at 25 kPa with a 42.5% relative capacitance changes to reference capacitance. Additionally, the results show that for ZnO and AlN membranes the deflection with no thermal stress is higher than that with thermal stress. However, an opposite behavior for the ZnS membrane structure has been observed. The mechanical and capacitance sensitivities are affected by the membrane thickness as the capacitance changes are inversely proportional to the membrane thickness. Such results open possibilities to utilize various materials for pressure sensor applications by means of the capacitance-based detection technique.


1995 ◽  
Vol 390 ◽  
Author(s):  
David J. Monk ◽  
Mahesh Shah

ABSTRACTStresses in thin polymer films have been studied for some time by using wafer bowing, bending beams, microstructure release, and laser holographic techniques. An alternative technique for measuring stresses in thin films is discussed in the following paper. Piezoresistive anisotropically etched single crystal silicon pressure sensors are sensitive not only to applied pressure, but also to applied package stress. Deposited passivation materials, like silicone gels and polyimides, have been observed to change the sensitivity of the pressure sensor. In the current work, a thin, conformal polymeric coating (parylene C) is being developed for these pressure sensors. This thin film has been observed to reduce the sensitivity of the device as a function of the film thickness and modulus and the silicon thickness and modulus. The parylene C thin films exhibit a consistent change in film stress during annealing indicating a modification to polymer crystallinity and a corresponding change in material properties. Qualitatively, the electrical output on the pressure sensor compares favorably with measurements taken using wafer bowing. Experimental DMA and TMA work has been performed to determine the modulus (7.84 × 105 psi) and CTE (39 ppm/°C at 25 °C) of the material. However, literature values of modulus (4.1 × 105 psi) have been used with finite element analysis to model the stress effect more accurately for the thin conformal coating on the pressure sensor device. These results indicate that the sensitivity of the pressure sensor will be reduced approximately quadratically as a function of the polymer coating thickness. An empirical function has been derived to estimate sensitivity loss as a function of substrate (i.e., initial diaphragm material) modulus and thickness and coating modulus and thickness.


1983 ◽  
Vol 105 (1) ◽  
pp. 6-11
Author(s):  
A. C. T. Chen ◽  
J. S. Templeton

An ice pressure sensor has been designed and built at Exxon Production Research Company (EPR) to measure the pressure in an ice sheet. Laboratory and analytical studies were performed to establish a data reduction procedure to relate the pressure sensor output to the pressure in the ice sheet. However, because of the complex mechanical behavior of sea ice, the present experiment was conducted to validate this data reduction procedure. The validated procedure is considered applicable to a broad class of embedded ice pressure sensors. Field in-ice pressure sensor response tests were conducted near Prudhoe Bay, Alaska, between February and April of 1978. Twenty-two tests were conducted on three test blocks of ice to investigate the in-ice response of three ice pressure sensors. An ice block measuring 10 ft by 20 ft and of full thickness of the natural annual ice was cut free from the surrounding ice sheet after the pressure sensor was installed at the center of the block. This ice block was loaded by an in-situ hydraulic ice loading device capable of delivering approximately two million lb of load. The pressure sensor output and the test load were monitored continuously during each test so that the pressure sensor output could be compared directly to the corresponding applied pressure. The test results indicated ratios of applied ice pressure to measured sensor pressure within the range hindcast by theoretical analysis.


Author(s):  
Jeahyeong Han ◽  
Shunzhou Yang ◽  
Mark A. Shannon

Capacitive pressure sensors measure changes in pressure typically by the deflection of a flexible conducting membrane towards a fixed electrode. The deflection in the membrane produces a quadratic change in capacitance, which often yields higher sensitivity to changes in pressure compared to piezo-resistive pressure sensors, which measures the resistance changes proportional to the applied pressure. However, residual stresses in the membrane can provide a substantial resistance to deformation compared to the driving force created by the applied pressure, which decreases the sensitivity at low pressures and produces a nonlinear signal. If the membrane is made compliant enough to increase sensivitiy, pull-in of the membrane can occur, reducing the effective pressure range of the capacitive manometer type pressure sensor. Hence, these type of sensors are typically not used to measure very low pressure differences over several hundred Pascals. To overcome this limitation, a capacitive pressure sensor was developed that operates in a peeling mode while under applied electrostatic actuation, which counters the residual stresses. The changes in capacitance can be detected if the pressure is just enough to overcome the interfacial electrostatic pressure. This type of pressure sensor can potentially be used for very low differential pressure differences, well below 100 Pa, over ~ 1 kPa range.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 976
Author(s):  
Zhuqi Sun ◽  
Haoyu Fang ◽  
Baochun Xu ◽  
Lina Yang ◽  
Haoran Niu ◽  
...  

Continuous monitoring of physical motion, which can be successfully achieved via a wireless flexible wearable electronic device, is essential for people to ensure the appropriate level of exercise. Currently, most of the flexible LC pressure sensors have low sensitivity because of the high Young’s modulus of the dielectric properties (such as PDMS) and the inflexible polymer films (as the substrate of the sensors), which don’t have excellent stretchability to conform to arbitrarily curved and moving surfaces such as joints. In the LC sensing system, the metal rings, as the traditional readout device, are difficult to meet the needs of the portable readout device for the integrated and planar readout antenna. In order to improve the pressure sensitivity of the sensor, the Ecoflex microcolumn used as the dielectric of the capacitive pressure sensor was prepared by using a metal mold copying method. The Ecoflex elastomer substrates enhanced the levels of conformability, which offered improved capabilities to establish intimate contact with the curved and moving surfaces of the skin. The pressure was applied to the sensor by weights, and the resonance frequency curves of the sensor under different pressures were obtained by the readout device connected to the vector network analyzer. The experimental results show that resonant frequency decreases linearly with the increase of applied pressure in a range of 0–23,760 Pa with a high sensitivity of −2.2 MHz/KPa. We designed a coplanar waveguide-fed monopole antenna used to read the information of the LC sensor, which has the potential to be integrated with RF signal processing circuits as a portable readout device and a higher vertical readout distance (up to 4 cm) than the copper ring. The flexible LC pressure sensor can be attached to the skin conformally and is sensitive to limb bending and facial muscle movements. Therefore, it has the potential to be integrated as a body sensor network that can be used to monitor physical motion.


2010 ◽  
Vol 44 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Rodolfo J. Trevino ◽  
Douglas L. Jones ◽  
Daniel Escobedo ◽  
John Porterfield ◽  
Erik Larson ◽  
...  

Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse


Sign in / Sign up

Export Citation Format

Share Document