Heat release rate: The single most important variable in fire hazard

1992 ◽  
Vol 18 (3) ◽  
pp. 255-272 ◽  
Author(s):  
Vytenis Babrauskas ◽  
Richard D. Peacock
Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 933-942
Author(s):  
ZHIGANG WU ◽  
XUE DENG ◽  
LIFEN LI ◽  
LIPING YU ◽  
JIE CHEN ◽  
...  

A high-efficiency fire retardant composition was prepared with dicyandiamide, phosphoric acid, boric acid, borax, urea and magnesium sulfate and it was used to process veneers which were then to prepare the plywood. Meanwhile, heat release and smoke release from combustion of plywood were tested by a cone calorimeter, including heat release rate, mass loss rate, CO yield, CO2 yield and oxygen consumption. Results showed that the plywood with this fire retardant treatment had the better flame-retardant performance and smoke suppression effect as well as the stronger char-forming capability compared to plywood without fire retardant treatment. The average heat release rate, total heat release, average effective heat of combustion, total smoke release, CO yield and oxygen consumption of the plywood with fire retardant treatment were decreased by 63.72%, 91.94%, 53.70%, 76.81%, 84.99% and 91.86%, respectively. Moreover, the fire growth index of plywood treated by fire retardant was relatively low (3.454 kW·m-2·s-1) and it took longer time to reach the peak heat release rate, accompanied with slow fire spreading. The fire performance index was relatively high (0.136 s·m2·kW-1) and it took longer time to be ignited, thus leaving a long time for escaping at fire accidents. The fire hazard of plywood with fire retardant treatment was low, and its safety level was high.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1297
Author(s):  
Marouane El El Gazi ◽  
Rodolphe Sonnier ◽  
Stéphane Giraud ◽  
Marcos Batistella ◽  
Shantanu Basak ◽  
...  

In this study, a representative set of thermally thin materials including various lignocellulosic and synthetic fabrics, dense wood, and polypropylene sheets were tested using a cone calorimeter at different heat fluxes. Time-to-ignition, critical heat flux, and peak of heat release rate (pHRR) were the main parameters considered. It appears that the flammability is firstly monitored by the sample weight. Especially, while the burning rate of thermally-thin materials does never reach a steady state in cone calorimeter, their pHRR appears to be mainly driven by the fire load (i.e., the product of sample weight and effective heat of combustion) with no or negligible influence of textile structure. A simple phenomenological model was proposed to calculate the pHRR taking into account only three parameters, namely heat flux, sample weight, and effective heat of combustion. The model allows predicting easily the peak of heat release rate, which is often considered as the main single property informing about the fire hazard. It also allows drawing some conclusions about the flame retardant strategies to reduce the pHRR.


2018 ◽  
Vol 8 (11) ◽  
pp. 2329 ◽  
Author(s):  
Mingyi Chen ◽  
Jiahao Liu ◽  
Ouyang Dongxu ◽  
Shuchao Cao ◽  
Zhi Wang ◽  
...  

To better understand the fire risk of primary lithium batteries, the combustion properties of different numbers of primary lithium batteries were investigated experimentally in this work. Based on the t2 fire principle and total heat release results from the experiments, a simplified analysis was developed to predict the fire hazard, and especially the heat release rate, of primary lithium batteries. By comparing the experiment and simulation results, the simulation line agrees well with the heat release rate curve based on the oxygen consumption measurements of a single primary lithium battery. When multiple batteries are burned, each battery ignites at different times throughout the process. The ignition time difference parameter is introduced into the simulation to achieve similar results as during multiple batteries combustion. These simulation curves conform well to the experimental curves, demonstrating that this heat release rate simulation analysis is suitable for application in batteries fires.


2001 ◽  
Vol 25 (5) ◽  
pp. 203-207 ◽  
Author(s):  
P.A. (Tony) Enright ◽  
Paul Vandevelde

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Andrew J. Kurzawski ◽  
Ofodike A. Ezekoye

Abstract In fire hazard calculations, knowledge of the heat-release rate (HRR) of a burning item is imperative. Typically, room-scale calorimetry is conducted to determine the HRRs of common combustible items. However, this process can be prohibitively expensive. In this work, a method is proposed to invert for the HRR of a single item burning in a room using transient heat flux measurements at the walls and ceiling near the item. The primary device used to measure heat flux is the directional flame thermometer (DFT). The utility of the inverse method is explored on both synthetically generated and experimental data using two so-called forward models in the inversion algorithm: fire dynamics simulator (FDS) and the consolidated model of fire and smoke transport (CFAST). The fires in this work have peak HRRs ranging from 200 kW to 400 kW. It was found that FDS outperformed CFAST as a forward model at the expense of increased computational cost and that the error in the inverse reconstruction of a 400 kW steady fire was on par with room-scale oxygen consumption calorimetry.


2020 ◽  
Vol 27 (5) ◽  
pp. 619-639 ◽  
Author(s):  
Qiangjun Zhang ◽  
Yong C Wang ◽  
Constantinos Soutis ◽  
Colin G. Bailey ◽  
Yuan Hu

Abstract This paper presents a coupled numerical investigation to assess the reaction to fire performance and fire resistance of various types of epoxy resin (ER) based composites. It examines the fire response of carbon fibre (CF) reinforced ER (CF/ER), ER with graphene nanoplatelets (GNP/ER) and CF reinforced GNP/ER (CF/GNP/ER). Thermal, physical and pyrolysis properties are presented to assist numerical modelling that is used to assess the material ability to pass the regulatory vertical burn test for new aircraft structures and estimate in-fire and post-fire residual strength properties. Except for the CF/GNP/ER composite, all other material systems fail the vertical burn test due to continuous burning after removal of the fire source. Carbon fibres are non-combustible and therefore reduce heat release rate of the ER composite. By combining this property with the beneficial barrier effects of graphene platelets, the CF/GNP/ER composite with 1.5 wt% GNP and 50 wt% CF self-extinguishes within 15 s after removal of the burner with a relatively small burn length. Graphene drastically slows down heat conduction and migration of decomposed volatiles to the surface by creating improved char structures. Thus, graphene is allowing the CF/GNP/ER composite panel to pass the regulatory vertical burn test. Due to low heat conduction and reduced heat release rate, the maximum temperatures in the CF/GNP/ER composite are low so the composite material retains very high in-fire and post-fire mechanical properties, maintaining structural integrity. In contrast, temperatures in the CF/ER composite are much higher. At a maximum temperature of 86 °C, the residual in-fire tensile and compressive mechanical strengths of CF/GNP/ER are about 87% and 59% respectively of the ambient temperature values, compared to 70% and 21% respectively for the CF/ER composite that has a temperature of 140 °C at the same time (but the CF/ER temperature will be higher due to continuing burning). Converting mass losses of the composites into char depth, the post-fire mechanical properties of the CF/GNP/ER composite are about 75% of the ambient condition compared to about 68% for the CF/ER composite.


2007 ◽  
Vol 334-335 ◽  
pp. 737-740
Author(s):  
Russel J. Varley ◽  
Andrew M. Groth ◽  
Kok Hoong Leong

This paper presents results of a study carried out to evaluate the effects of an organomodified nanoclay, either on its own or in combination with a polyimide, upon the fire performance of a commercially available nylon. The fire performance, as determined using cone calorimetry showed that up to 40% improvement in the peak heat release rate could be achieved at addition levels of only around 5wt% of nanoclay. The level of improvement was shown to be strongly dependent upon nanoscale dispersion with a more highly exfoliated morphology, as determined using transmission electron microscopy, which showed a greater reduction in the peak heat release rate compared to a more ordered intercalated structure. Investigation of the mechanism of fire retardancy showed that the reduction in the heat release rate is due to the nanoclay reinforcing the char layer which prevented combustible products from entering in to the gaseous phase. Generally, though, the time to ignition is unaffected by nanoclay additions. The addition of the polyimide to the nanoclay reinforced nylon was inconclusive showing little evidence of further improvements in fire performance.


Author(s):  
Andrew Kurzawski ◽  
Ofodike A. Ezekoye

The heat-release rate (HRR) of a burning item is key to understanding the thermal effects of a fire on its surroundings. It is, perhaps, the most important variable used to characterize a burning fuel packet and is defined as the rate of energy released by the fire. HRR is typically determined using a gas measurement calorimetry method. In this study, an inversion algorithm is presented for conducting calorimeter on fires with unknown HRRs located in a compartment. The algorithm compares predictions of a forward model with observed heat fluxes from synthetically generated data sets to determine the HRR that minimizes a cost function. The effects of tuning a weighting parameter in the cost function and the issues associated with two different forward models of a compartment fire are examined.


2021 ◽  
Vol 35 (3) ◽  
pp. 14-22
Author(s):  
Ho-Sik Han ◽  
Sun-Yeo Mun ◽  
Cheol-Hong Hwang

To improve the reliability of safety assessments in domestic performance-based designs (PBDs), the problem of the input parameters being dependent on fire-simulation users was quantitatively analyzed. Thus, the results of statistical analyses of domestic PBD reports evaluated over the last 5 years were examined. It was determined that the uncertainties of the input parameters might have a relatively larger influence on the statistical deviations than the measurement uncertainties. Accordingly, a sensitivity analysis was performed by considering the statistical deviations of the input parameters that could greatly influence the prediction results of visibility, which are important for the available safe egress time. The main results were as follows: a large change in visibility was observed owing to deviations of the heat release rate and soot yield. Based on this study, it is expected that more accurate results can be obtained if the objectivity of input parameters determined by user dependence can be secured in domestic PBDs.


Sign in / Sign up

Export Citation Format

Share Document