A comparison of test methods for determining in vitro drug release from transdermal delivery dosage forms

1986 ◽  
Vol 4 (5) ◽  
pp. 601-607 ◽  
Author(s):  
David J. Mazzo ◽  
Eva K.F. Fong ◽  
Stephen E. Biffar
2020 ◽  
Author(s):  
Padmanabha Rao Amarachinta ◽  
Noufel Samed ◽  
Ananda Kumar Ch. ◽  
Madhusudhan Alle ◽  
Jin-Chul Kim

Abstract BackgroundCarvedilol, a popular anti-hypertensive drug, when orally administered has very poor bioavailability on the account of undergoing hepatic metabolism and therefore it becomes primal to explore an alternative drug delivery route for carvedilol. For a drug to be delivered by undergoing the least number of stages of metabolism and achieve high target specificity, transdermal delivery is the most preferred route. Hence, a study was conducted to test the potential of ethosomes as a candidate for transdermal delivery of carvedilol. A statistical study by using Central Composite Design (CCD) was also conducted for optimizing the quantity of the primary constituents present in the ethosomes. The optimized ethosomal formulation was then incorporated into a hydrogel to prepare the ethosomal gel.ResultsThe optimized formulated ethosomal suspension and the ethosomal gel were undergone physicochemical, compatibility and in-vitro drug release studies along with characterization studies. The incorporation of the ethosomes into the hydrogel proved to be effective for skin application thereby ensuring better transdermal delivery. The optimized ethosomal gel has showed credible physical appearance, spreadability, viscosity and in-vitro drug release. The pharmacodynamic studies conducted on Wister rats revealed that the anti-hypertensive action was gradual and sustained lasting up to a period of 24 hours. The stability studies conducted also showed that prepared formulations maintained its consistency within the range for the measured parameters of physical appearance, rheological properties and entrapment efficiency for a period of 3 months.Conclusions The incorporation of the drug loaded into hydrogel and its effect on regulating systolic blood pressure in a sustained way lasting 24 hours proved to be better than the present available marketed formulation which has a rapid action with the anti-hypertensive effect lasting only for 10 hours. The chosen route for delivering the drug transdermally hence proved to be effective with better enhancement and permeation capability and shows the high potential of ethosomes to be considered for novel delivery of other anti-hypertensive drugs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Usamah Abdulrahman Alnemer

Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.


2020 ◽  
Vol 11 (1) ◽  
pp. 730-746
Author(s):  
Dandasi Jayachandra Dev ◽  
Jayaprakash J S ◽  
Kulkarni P K ◽  
Akhila A R ◽  
Namratha S Saraf

The aim of the present work was to compare the wound healing efficacy of different topical dosage forms such as β cyclodextrin complex gel, liposomal gel, and ointment on the rat model. Simvastatin was used as a drug, β cyclodextrin was used as a complexing agent to enhance solubility, L α Phosphatidylcholine as a phospholipid, and cholesterol as a stabilizing agent. Liposomes were prepared by thin-film hydration method, β cyclodextrin complexes of simvastatin were prepared by spray drying technique, and the ointment was prepared in simple method. Beta cyclodextrin gels and liposomal gels were prepared by direct incorporation of spray-dried products and lyophilized liposomes into Carbopol gel. The gel was evaluated for drug content, particle size, viscosity, spreadability, surface morphology, in-vitro drug release studies, skin irritation study, and wound healing activity studies. FTIR and DSC studies showed no chemical interaction between the drug and excipients. The particle size of β cyclodextrin complexes was in the range of 0.5 μm to 2.5 μm and for liposomes 163 nm to 725 nm. The in-vitro drug release was 96.7 % at the end of the sixth hour for β cyclodextrin gel, 29.7 % at the end of the sixth hour for liposomal gel, and 96.2 % at the end of 3 hours for ointment. Wound healing activity studies were carried out for 21 days on albino wrister rats, a period of epithelization, and rate of wound contraction was measured on 4, 8, 14, 16, and 21 days. Simvastatin ointment showed a significant effect on wound healing in the rat model compared to β-cyclodextrin gel and liposomal gel. Hence, Simvastatin ointment could be a potential dosage form for clinical utility on wound healing.


Author(s):  
C. D. Melia ◽  
P. Marshall ◽  
P. Stark ◽  
S. Cunningham ◽  
A. Kinahan ◽  
...  

Author(s):  
Niket N Garude ◽  
Rachel B Geevarghese

Nanostructure Lipid Carrier (NLC) is one of the lipid-based drug delivery systems that are used as carrier for delivery of drugs. NLC are composed of mixture of solid lipid and liquid lipid, which form imperfect type of lipid matrix with improved drug loading capacity, drug release profile and stability. The aim of the present study was to develop and characterize nanostructure lipid carrier for transdermal delivery of pioglitazone (PZ) to overcome the problems related with oral route of administration and to improve systemic availability. NLC’s were prepared by high-speed homogenization method. Optimized NLC formulation was evaluated for particle size, percentage entrapment efficiency, surface morphology, DSC analysis, in-vitro drug release etc. The optimized NLC formulation was formulated as a transdermal patch and evaluated for in vitro drug release study and primary skin irritation study. In vivo hypoglycaemic activity of pioglitazone -NLC loaded transdermal patch was studied in comparison with its orally administered suspension. PZ- NLC loaded transdermal patch was found to be non-irritant and showed reduction in blood glucose level in a controlled manner up to 24 hrs.    


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Susan D’Souza

This review summarizes the methods used to study real-time (37°C) drug release from nanoparticulate drug delivery systems and establish an IVIVC. Since no compendial standards exist, drug release is currently assessed using a variety of methods including sample and separate (SS), continuous flow (CF), dialysis membrane (DM) methods, and a combination thereof, as well as novel techniques like voltametry and turbidimetry. This review describes the principle of each method along with their advantages and disadvantages, including challenges with set-up and sampling. The SS method allows direct measurement of drug release with simple set-up requirements, but sampling is cumbersome. With the CF method, sampling is straightforward but the set-up is time consuming. Set-up as well as sampling is easier with the DM, but it may not be suitable for drugs that bind to the membrane. Novel methods offer the possibility of real-time drug release measurement but may be restricted to certain types of drugs. Of these methods, Level A IVIVCs have been obtained with dialysis, alone or in combination with the sample and separate technique. Future efforts should focus on developing mathematical models that describe drug release mechanisms as well as facilitate formulation development of nano-sized dosage forms.


Sign in / Sign up

Export Citation Format

Share Document