scholarly journals Enhancement and Extended Release of the Anti-hypertensive Drug Carvedilol using Optimized Ethosomal Gel via Transdermal Route

Author(s):  
Padmanabha Rao Amarachinta ◽  
Noufel Samed ◽  
Ananda Kumar Ch. ◽  
Madhusudhan Alle ◽  
Jin-Chul Kim

Abstract BackgroundCarvedilol, a popular anti-hypertensive drug, when orally administered has very poor bioavailability on the account of undergoing hepatic metabolism and therefore it becomes primal to explore an alternative drug delivery route for carvedilol. For a drug to be delivered by undergoing the least number of stages of metabolism and achieve high target specificity, transdermal delivery is the most preferred route. Hence, a study was conducted to test the potential of ethosomes as a candidate for transdermal delivery of carvedilol. A statistical study by using Central Composite Design (CCD) was also conducted for optimizing the quantity of the primary constituents present in the ethosomes. The optimized ethosomal formulation was then incorporated into a hydrogel to prepare the ethosomal gel.ResultsThe optimized formulated ethosomal suspension and the ethosomal gel were undergone physicochemical, compatibility and in-vitro drug release studies along with characterization studies. The incorporation of the ethosomes into the hydrogel proved to be effective for skin application thereby ensuring better transdermal delivery. The optimized ethosomal gel has showed credible physical appearance, spreadability, viscosity and in-vitro drug release. The pharmacodynamic studies conducted on Wister rats revealed that the anti-hypertensive action was gradual and sustained lasting up to a period of 24 hours. The stability studies conducted also showed that prepared formulations maintained its consistency within the range for the measured parameters of physical appearance, rheological properties and entrapment efficiency for a period of 3 months.Conclusions The incorporation of the drug loaded into hydrogel and its effect on regulating systolic blood pressure in a sustained way lasting 24 hours proved to be better than the present available marketed formulation which has a rapid action with the anti-hypertensive effect lasting only for 10 hours. The chosen route for delivering the drug transdermally hence proved to be effective with better enhancement and permeation capability and shows the high potential of ethosomes to be considered for novel delivery of other anti-hypertensive drugs.

2019 ◽  
Vol 8 (3) ◽  
pp. 627-636

Ketoprofen (KP) is a 2-(3-benzolphenyl) propionic acid with anti-inflammatory, analgesic and antipyretic properties. It belongs to BCS Class II drug. It also has a short half-life of 120 minutes. Drugs acidic nature causes gastric irritation which is a major limitation. The present work aims to develop and evaluate solid lipid nanoparticles (SLN) to provide transdermal drug delivery. SLN loaded gel will enhance the solubility of Ketoprofen thereby increasing bioavailability giving controlled drug release. Solid lipid nanoparticles were prepared by solvent injection followed by probe sonication method. Cetyl palmitate was used as lipid and Tween80 as a surfactant. Batches were prepared by varying the concentration of the lipid phase and the surfactant phase. The solid lipid nanoparticles were evaluated for particle size analysis, drug entrapment efficiency, zeta potential and in vitro drug release study. Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) study were done to study crystallinity behavior.SLN was studied for its anti-inflammatory activity. F4 batch of SLN was incorporated into gel and evaluated for drug content, pH, viscosity, in-vitro diffusion and ex-vivo diffusion study. SLN were successfully prepared. Among the batches F1-F9, F4 batch was selected based upon the size, entrapment efficiency, stability and drug release. The resultant solid lipid nanoparticles showed entrapment efficiency of 78.24%. The solubility was improved by 50 fold. The particle size was 250 nm, PDI was 0.398 and zeta potential -21.98mV. In-vitro drug release of gel from F4 SLN batch showed controlled drug release in 8 hours. Transdermal delivery of SLN retaining its anti-inflammatory activity was successfully developed.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Padmanabha Rao Amarachinta ◽  
Garima Sharma ◽  
Noufel Samed ◽  
Ananda Kumar Chettupalli ◽  
Madhusudhan Alle ◽  
...  

Abstract Background Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. Results The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of − 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. Conclusions Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Author(s):  
Farhana Sultan ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Microsponge containing Luliconazole (LCZ) with different proportion of drug:polymer (Ethyl cellulose and Eudragit RS 100) were obtained efficiently using Quasi-emulsion solvent diffusion method. Luliconazole is an anti-fungal drug used for the topical delivery. The purpose of the microsponge formulation is to control the release of LCZ drug to the skin through Microsponge Delivery System (MDS) known to be the novel technique which overcome the maximum concentration of active ingredient, frequency doses, and skin irritation. The prepared microsponges were examined using drug content, % production yield, % entrapment efficiency and in-vitro drug release. The formulation were subjected to in-vitro drug release studies for 6 hr in which it was concluded that Ethyl cellulose microsponges formulated by drug:polymer (1:1) and Eudragit RS 100 microsponges formulated by drug:polymer (1:3) showed maximum controlled release i.e., Increase in drug:polymer ratio (1:1 to 1:9) increased the production yield and entrapment efficiency of microsponges using Ethyl cellulose with no significant effect for Eudragit RS 100.Therefore, both formulation F1 and F2 was dispersed in carbopol gel preparation for controlled delivery of LCZ to the skin. Various physical parameters like pH, spreadability, viscosity and in-vitro drug diffusion studies were evaluated for the prepared gel formulations. Microsponge gel formulation i.e., FG1 showed better results for controlled release of 89.40% as compared to FG2 i.e., 92.18% over the period of 12 hrs which is performed in Franz Diffusion Cell. On basis of in-vitro diffusion studies for LCZ gel formulation, microsponges using Ethyl cellulose (FG1) was found to be best for its controlled release of LCZ for 12 hrs and followed zero order kinetics. Hence, formulated LCZ loaded gel have potential to treat fungal infections i.e., tinea pedis, tinea cruris and tinea corporis.


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Author(s):  
GITA CHAURASIA ◽  
NARENDRA LARIYA

Objective: Ivabradine hydrochloride (IH), a benzazepine derivative used to treat cardiovascular disease angina pectoris. In this study IH-loaded novel carrier systems transfersomes (TFs) and conventional liposomes (CLs) were developed and compared for their efficacy to enhance the stability of drugs from degradation. Methods: TFs formulations (TF-1, TF-2 and TF-3) were prepared by using different biocompatible surfactants; tween-80 (TW), span-80(S) and sodium deoxycholate (SC) in the concentration ratio of 15 parts with 85 parts of soy phosphatidylcholine as phospholipid by thin-film hydration method. These vesicles were compared with CLs formulation (L-1) prepared in 7:3 molar ratio of soy phosphatidylcholine: cholesterol by following the same method. These vesicles were compared for physical appearance, vesicle shape, and size, percentage drug entrapment efficiency (%DEE), deformability index (DI), in vitro percentage cumulative drug release study, and physical stability studies. The chosen optimized novel carriers were observed under scanning electron microscopy. Results: The compared data demonstrated that the physical appearance for all vesicles was turbid and had a spherical shape. The size distribution was in the range of 129.0 nm to 273.5 nm in vesicles. The %DEE (79.0±0.94) and DI (35.0±1.9) was found maximum in TF-1 formulation that was 2.3 times higher than L-1 formulation. The in vitro percentage cumulative drug release study followed second-order polynomial kinetics that was 2.0 times higher than L-1and 2.9 times higher than the plain drug in 30 min (90.4±0.06%) from TF-1. The vesicles were found to be stable at refrigeration conditions. Conclusion: Thus, amongst of all vesicles TW loaded TFs (TF-1) was chosen as an excellent novel vesicular carrier for hydrophilic drugs due to its higher deformability behavior than CLs that protects the certain drugs from biodegradation and provides stability.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


Sign in / Sign up

Export Citation Format

Share Document