scholarly journals A mathematical model for the movement of a conducting liquid through a conducting porous medium: I. Excitation of oscillations of the magnetic field by the surface Rayleigh wave

1996 ◽  
Vol 24 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Kh.Kh. Imomnazarov
2010 ◽  
Vol 97-101 ◽  
pp. 4141-4145 ◽  
Author(s):  
Li Min Shi ◽  
Er Liang Liu ◽  
Yong Jiang Niu ◽  
Yu Quan Chen

Traditionally, the magnetic field is always vertical to the electrical field in a magnetic-electrochemical compound polishing.The magnetic field is set to parallel the electrical field in this paper. The mathematical model of the charged particles movement in a magnetic field is established through the analysis of its movement process when using Coulomb laws and Lorentz force. Through constructing the velocity formulation and loci formulation, the function of the magnetic field is proved. Because of the magnetic field, the concentration polarization of electrochemical reaction can be reduced more and the electrochemical reaction can be accelerated easily than the traditional polishing in which the magnetic field is vertical to the electrical field. Finally, to verify the model, the magnetic-electrochemical compound polishing process has been tested and the results, compared with those obtained from the model, have shown the movement model is reasonable and the analysis to function of magnetic field is correct.


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Rita Choudhury ◽  
Utpal Jyoti Das

The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.


1993 ◽  
Vol 03 (06) ◽  
pp. 805-822 ◽  
Author(s):  
S. CLAIN ◽  
J. RAPPAZ ◽  
M. SWIERKOSZ ◽  
R. TOUZANI

We present both a mathematical model and a numerical method for simulating induction heating processes. The geometry of the conductors is cylindrical and the magnetic field is assumed to be parallel to the invariance axis. The model equations have current tension as prescribed data rather than current intensity. In particular, the formulation of the electromagnetic problem uses the magnetic field as the unknown function. The numerical method takes into account the time periodicity of the prescribed tension and deals with the two different time scales of electromagnetic and thermal phenomena.


2014 ◽  
Vol 19 (1) ◽  
pp. 61-77
Author(s):  
R. Hemalatha

Abstract The effect of a magnetic field dependent viscosity on a Soret driven ferro thermohaline convection in a rotating porous medium has been investigated using the linear stability analysis. The normal mode technique is applied. A wide range of values of the Soret parameter, magnetization parameter, the magnetic field dependent viscosity, Taylor number and the permeability of porous medium have been considered. A Brinkman model is used. Both stationary and oscillatory instabilities have been obtained. It is found that the system stabilizes only through oscillatory mode of instability. It is found that the magnetization parameter and the permeability of the porous medium destabilize the system and the Soret parameter, the magnetic field dependent viscosity and the Taylor number tend to stabilize the system. The results are presented numerically and graphically


2016 ◽  
Vol 09 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Shakera Tanveer ◽  
V. P. Rathod

Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible and electrically conducting fluid in the presence of magnetic field has been investigated. Analytical expressions for axial velocity, flow rate, fluid acceleration and shear stress are obtained by applying the Laplace and finite Hankel’s transforms. The velocity profiles for various values of Hartmann number, couple stress parameters and the angle of inclination are shown graphically. Also the effects of body acceleration, Womerseley parameters and permeability parameters have been discussed. The results obtained in the present mathematical model for different values of the parameters involved in the problem show that the flow of blood is influenced by the effect of magnetic field, the porous medium and the inclination angle. The present model is compared with the other existing models. Through this theoretical investigation, the applications of magnetic field have also been indicated in the field of biological, biomedical and engineering sciences.


2002 ◽  
Vol 57 (12) ◽  
pp. 955-960 ◽  
Author(s):  
◽  
R. C. Sharmab ◽  
R. S. Chandel

The Rayleigh-Taylor instability of two supersposed couple-stress fluids of uniform densities in a porous medium in the presence of a uniform horizontal magnetic field is studied. For mathematical simplicity, the stability analysis is carried out for two highly viscous fluids of equal kinematic viscosity and equal couple-stress kinematic viscosity. A potentially stable configuration remains stable under certain conditions, and a potentially unstable configuration is stable under certain conditions. The magnetic field stabilizes a certain wave-number range k>k*, which is unstable in the absence of the magnetic field.


Author(s):  
Mahshid Hadavand ◽  
Aydin Nabovati ◽  
Antonio C. M. Sousa

The present work employs the single relaxation time lattice Boltzmann method along with the pseudo potential model for the two-phase flow simulation of a ferrofluid in a random two-dimensional medium under the influence of a spatially variable external magnetic field. The magnetic field is created and controlled by placing a permanent magnet at the outlet end of the channel filled with a porous medium. The magnitude of the magnetic force acting on the ferrofluid is controlled by changing the distance of the magnet from the channel outlet. The spatially variable magnetic field strength was analytically calculated inside the channel using the available relations in the literature. The main goal of the present work is to qualitatively study the applicability of the single relaxation time (SRT) lattice Boltzmann method (LBM) to modelling flow of a ferrofluid and its steering into porous media. Penetration of the ferrofluid into the porous medium, which is initially filled with a fluid with no magnetic properties, was simulated in time. The simulation results for the flow front are presented and the effect of the magnetic field strength on the rate of flow penetration and front advancement was studied qualitatively. The LBM has proved to be a powerful tool for modelling flows, which involve multi-physics in complex geometries, when mesoscopic inter-particle forces and interaction with external complex forces have to be determined.


1965 ◽  
Vol 21 (4) ◽  
pp. 577-590 ◽  
Author(s):  
J. C. R. Hunt

The paper presents an analysis of laminar motion of a conducting liquid in a rectangular duct under a uniform transverse magnetic field. The effects of the duct having conducting walls are investigated. Exact solutions are obtained for two cases, (i) perfectly conducting walls perpendicular to the field and thin walls of arbitrary conductivity parallel to the field, and (ii) non-conducting walls parallel to the field and thin walls of arbitrary conductivity perpendicular to the field.The boundary layers on the walls parallel to the field are studied in case (i) and it is found that at high Hartmann number (M), large positive and negative velocities of order MVc are induced, where Vc is the velocity of the core. It is suggested that contrary to previous assumptions the magnetic field may in some cases have a destabilizing effect on flow in ducts.


Sign in / Sign up

Export Citation Format

Share Document