Role of tyrosine kinase in insulin release in an insulin secreting cell line (INS-1)

1995 ◽  
Vol 7 (5) ◽  
pp. 505-512 ◽  
Author(s):  
E.J. Verspohl ◽  
B. Tollkühn ◽  
H. Kloss
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1381-1381
Author(s):  
Adrian Schwarzer ◽  
Johann Meyer ◽  
Martijn Brugman ◽  
Axel Schambach ◽  
Martin Stanulla ◽  
...  

Abstract Abstract 1381 T-cell acute lymphoblastic leukemia (T-ALL) remains a therapeutic challenge. T-ALLs are characterized by recurring chromosomal rearrangements causing aberrant expression of transcription factors (Myb; TAL/SCL; HOX) dividing patients into different subgroups. Activating mutations in NOTCH, the master regulator of T-cell development, are found in more than 60% of T-ALLs independently of subtype. Most T-ALLs display a hyperactivation of the PI3K-AKT-mTOR pathway, a potential target for therapeutic intervention. The master regulator of PI3K-AKT signalling is PTEN, which is frequently inactivated in cancer. Recent data suggests that complete PTEN loss due to mutation is rare in primary human T-ALL, whereas PTEN-inhibiting posttranslational modifications are more common (Barata et al., J. Clin. Invest. 2008, 118). As these modifications decrease, but do not abolish the phosphatase activity of PTEN, we hypothesized that further input from tyrosine kinases, particularly receptor tyrosine kinases (RTK), may be needed to sustain PI3K-AKT-mTOR activation. In order to investigate how RTK-signaling may contribute to the pathogenesis of T-ALL we used an established murine bone marrow transplantation model (Li et al. Blood 2009, 113). To mimic tyrosine-kinase signaling we expressed δTrkA, a constitutively active TRKA receptor tyrosine kinase (TRK =tropomyosin-related kinase) from gammaretroviral or lentiviral vectors in c-kit+ Sca-1+ Lin− (KSL) cells. Intravenous injection of δTrkA-transduced hematopoietic cells in C57BL6 mice (n=10) induced transplantable T-ALL with a latency of about 120 days. The resulting T-ALLs could be propagated in culture as clonal cell lines. Signaling studies showed that δTRKA activates predominantly ERK upon expression in murine hematopoietic cell lines. However, the obtained δTRKA+ T-ALL lines (n=7) showed a profound shift in the use of downstream signaling cascades, displaying a very high activation of AKT-mTOR and absent ERK phosphorylation, resembling human T-ALL. High AKT activation was uniformly detected regardless of PTEN protein expression in all but one T-ALL (#003). To understand the rewired signaling network we looked for a potential contribution of insertional mutagenesis and chromosomal aberrations. Array-CGH showed homozygous deletions on chr14c2 involving the T-cell receptor alpha and delta genes in 3/3 cell lines and heterozygous deletions in Ikzf1 in 2/3 cell lines. Viral integration sites showed no common insertion pattern and no insertion in genes implicated in RTK-signaling. The expression of genes in proximity to viral integrations (±500 kb) appeared unaltered as determined by cDNA-microarray analysis of the T-ALL cell line #483 against wild type CD4+CD8+ thymocytes. Microarray analysis revealed enrichment of Notch1 target genes in the T-ALL cell line #483. Sequencing of Notch1 revealed both, PEST domain mutations and the recently described (Aster et al, Blood 2010, 116) RAG mediated 5'-deletions in cis, in all but one investigated T-ALL. Northern and Western Blots confirmed the expression of truncated Notch1 transcripts and protein, respectively. The one cell line (#003) which retained the original δTrkA signaling pattern had no Notch mutation and could only be cultured on OP9-Delta-like-1 stroma cells, highlighting the importance of Notch signaling. As this cell line was established from a mouse displaying an enlarged thymus, but no full manifestation of T-ALL, our data suggests that acquisition of Notch mutations is a late, but necessary step required for overt leukemia, whereas the initiating events may arise in kinase signaling pathways of prethymic progenitors. All T-ALL cell lines were sensitive to mTOR or Notch inhibition with Rapamycin or Compound E, respectively. Finally, we used phosphoprotein-arrays to monitor the phosphorylation of 42 RTK in childhood T-ALL samples with different activating NOTCH mutations (n=5) and detected several activated RTK (e.g. MSPR, FGFR, ErbB4, VEGFR) in the patient samples. Taken together, our findings suggest a cooperation of RTK and activating NOTCH mutations in mTOR activation seen in T-ALL and encourage further investigation of 1) aberrant RTK-signaling in T-ALL 2) the role of RTK activation in creating a preleukemic cell clone, 3) evaluation of combined therapy targeting RTKs and NOTCH, and 4) the role of activated NOTCH on mTORC2-AKT activation independently of PTEN. Disclosures: Baum: Patent office: Patents & Royalties.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2804-2804
Author(s):  
Aline Schmidt-Tanguy ◽  
Annette Romanski ◽  
Patricia Mambou ◽  
Wolf-Karsten Hofmann ◽  
Norbert Ifrah ◽  
...  

Abstract The Bcr-Abl oncogene is present in 30-40% of adult patients with acute lymphoblastic leukemia (ALL). Therapy with imatinib has become standard for Ph+ ALL but resistance to the tyrosine kinase inhibitor occurs for the majority of patients. In about 80% of patients with acquired resistance mutations in the tyrosine kinase domain (TKD) have been found. In contrast, primary resistance to imatinib appears to be multifactorial and precise mechanisms have been incompletely elucidated. We have established an imatinib-resistant cell line (SupB15RT) which was derived from the previously well characterized SupB15 cell line (SupB15WT) by gradually increasing the exposure to imatinib. We found that several commonly implicated mechanisms of imatinib resistance, i.e. Bcr-Abl gene amplification, point mutations in the TKD, Bcr-Abl overexpression, up-regulation of multidrug resistance gene proteins or ineffective inhibition of Bcr-Abl tyrosine phosphorylation do not play a role in conferring the imatinib-resistant phenotype in SupB15RT cells. Thus, the SupB15RT cells represent a suitable model for the analysis of resistance mechanisms in Ph+ ALL with primary imatinib resistance. Interestingly, SupB15RT cells show cross-resistance to the second generation Abl kinase inhibitors Nilotinib and Dasatinib. Analysis of signal transduction pathways downstream of Bcr-Abl revealed that imatinib exposure was not associated with down-regulation of pSTAT-5 and pErk in the imatinib-resistant SupB15RT cells, in contrast to SupB15WT. Phosphorylation of Akt was inhibited by 0.5μM imatinib in SupB15WT cells, whereas imatinib in concentrations up to 5μM failed to suppress Akt phosphorylation in SupB15RT cells, indicating constitutive activation of Akt kinase during imatinib treatment. By comparative gene expression analysis of SupB15WT vs. SupB15RT cells using Affimetrix-Microarrays, we identified 29 differentially regulated (at least 3-fold) genes. One of the most highly up-regulated genes in imatinib-resistant SupB15RT cells was Autotaxin (ATX), a nucleotide pyrophosphatase/ phosphodiesterase 2. This exo-enzyme was originally identified as a tumor cell autocrine motility factor, which is involved in tumor progression and migration in various tumor cell types. ATX is a lysophospholipase D which is involved in the synthesis of lysophosphatidic acid (LPA), a signaling molecule that promotes survival, growth, differentiation, and motility. We investigated if LPA imparted imatinib resistance in SupB15WT cells by modulation of growth, survival and migration. When SupB15WT cells were treated with LPA, alone or in combination with imatinib, SupB15WT cell proliferation was increased both in the absence as well as in the presence of imatinib. The dose-dependent increase of proliferation after LPA treatment was 1.9–2.6-fold (1–10μM LPA) in the presence of 1μM imatinib. In addition we performed migration experiments using Transwell assays. We detected a 3-fold increase in migration of SupB15RT vs. SupB15WT cells. We found no influence on apoptosis in imatinib treated SupB15WT cells treated with LPA compared with cells not treated with LPA. Taken together, our results indicate a role of ATX in imatinib-resistant SupB15RT cells, preferentially by stimulating proliferation and migration through LPA signaling via LPA receptors and activation of PI3K and Akt.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4412-4412
Author(s):  
Bastianella Perazzona ◽  
Yu-Hsi Lin ◽  
Ralph B. Arlinghaus

Abstract Abstract 4412 Chronic myeloid leukemia (CML) is a hematological disease caused by the fusion protein Bcr-Abl tyrosine kinase. Development of the tyrosine kinase inhibitor Imatinib Mesylate (IM) has significantly improved the long-term survival of early stage CML patients. However, occurrence of drug resistance, permanence of residual disease and recurrence of active leukemia if IM is discontinued, remain problems awaiting solution. Therefore, new therapeutic strategies aimed at targeting alternative signaling pathways or CML progenitor cells that survive IM treatment are needed. We have previously shown that Janus kinase 2 (Jak2) is activated in Bcr-Abl+ cells. We have demonstrated that reduction of Jak2 activity by the Jak2-specific inhibitor TG101209 (TG) or by genetic knock down (Jak2 shRNA and siRNA) in Bcr-Abl+ cell lines, IM-resistant cells and CML blast crisis cell lines resulted in reduced levels of phosphorylation of Tyr177 and of total Bcr-Abl protein. Jak2 inhibition results in diminished activation of the Ras, PI-3 kinase pathways and reduced levels of pTyrSTAT5 (Samanta et al., Leukemia 2011). During these studies we observed that K562 cells and IM-resistant cell line K562-R had different susceptibility to the effect of TG, with K562-R showing increase sensitivity to lower concentrations of TG resulting in faster destabilization of the Bcr-Abl protein. Based on these observations, we hypothesized that increased sensitivity of the K562-R cells was due to the different state of activation of Jak2. In addition, based on recent studies by (Dawson et al., Nat 2009) and by (Rinaldi et al., Blood 2010) we also hypothesized that different levels of Jak2 activation may influence the localization of Jak2 in the cell. We used cell fractionation and western blotting analysis to show that in K562-R cells, active Jak2 is mostly localized in the nucleus with a minor pool found in the cytoplasm. In K562 cells, active Jak2 is equally distributed in both cytoplasmic and nuclear compartment. In addition, immuno-fluorescence confocal analysis of total Jak2 distribution in K562 shows a very organized localization of Jak2 at one pole of the cells but this organization is lost in K562-R and total Jak2 appears uniformly distributed within the cell. K562-R cells were isolated as a Bcr-Abl independent IM resistant cell line that expressed high levels of activated Lyn kinase (Donato et al., Blood 2003). We used K562-R as a model to study the role of Jak2 in a non Bcr-Abl addicted cell line. Since we have previously published that Jak2 up-regulates Lyn kinase activity (Samanta et al., Oncogene 2009), we propose that the higher activation of Jak2 in K562-R is the main driver of oncogenicity and IM resistance and that this cell line may be used to model the role of Jak2 in a cell that is not Bcr-Abl “addicted.” Disclosures: No relevant conflicts of interest to declare.


1990 ◽  
Vol 267 (1) ◽  
pp. 227-232 ◽  
Author(s):  
S J Hughes ◽  
J G Chalk ◽  
S J Ashcroft

We examined the contribution of signal-transduction pathways to acetylcholine-induced insulin release in the clonal beta-cell line HIT-T15. To assess the importance of changes in cytosolic free Ca2+ [(Ca2+]i), we studied time courses of the effects of glucose and acetylcholine on [Ca2+]i and insulin release in quin 2-loaded HIT cells. Incubation in the presence of glucose (2 mM) resulted in a sustained increase in [Ca2+]i in HIT cells from 98 +/- 7 nM to 195 +/- 12 nM measured after 9 min, whereas subsequent addition of acetylcholine (50 microM) produced a transient increase in [Ca2+]i which reached a peak after 30 s (at 274 +/- 10 nM), returning to pre-stimulus levels after 3 min. In contrast, incubation of HIT cells with acetylcholine in the presence of glucose produced a sustained increase in insulin release over and above that stimulated by glucose alone; after 10 min acetylcholine had potentiated glucose-stimulated insulin release by an additional increment of 135%. The transient increase in [Ca2+]i induced by acetylcholine was dose-dependent, and was prevented by omission of glucose or extracellular Ca2+ from the incubation medium. It was also inhibited by inclusion of 50 microM-verapamil in the incubation medium (by 87 +/- 3%) or by decreasing the Na+ concentration in the medium (by 73 +/- 6%). To evaluate the role of the protein kinase C pathway, we have pretreated HIT cells with the phorbol ester 12-O-tetradecanoylphorbol acetate (TPA), to deplete the protein kinase C activity, and have compared their secretory activity with that of control cells. Protein kinase C activity was decreased by 73% in HIT cells cultured in the presence of 200 nM-TPA for 22-24 h. TPA pre-treatment also significantly decreased the insulin content of HIT cells, but had no effect on cell number or the increases in [Ca2+]i induced by glucose or acetylcholine. TPA-pre-treated cells responded comparatively less well to secretagogues than did control cells: glucose-stimulated insulin release was decreased by 40%, whereas potentiation by TPA was significantly decreased by 50% in comparison with control cells (P less than 0.05, n = 24). Acetylcholine (50 microM) potentiated glucose-stimulated insulin release by 61% in control cells. This effect was abolished in HIT cells pre-treated with TPA, whereas these cells still retained their normal secretory response to stimulation by forskolin. These data suggest that an early increase in [Ca2+]i may be important for the initial increase in insulin release induced by acetylcholine in HIT cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 109 (2) ◽  
pp. 201-207 ◽  
Author(s):  
N. C. Sturgess ◽  
M. L. J. Ashford ◽  
C. A. Carrington ◽  
C. N. Hales

ABSTRACT Using the patch-clamp technique we observed three distinct classes of K+ channels which were spontaneously active in excised 'inside-out' membrane patches from an insulin-secreting rat pancreatic islet cell line (CRI-G1). Two of these occurred infrequently, one with a conductance of approximately 7 pS, and the other a conductance of 220 pS. The activation of the 220 pS K+ channel was dependent upon the membrane voltage and was sensitive to the concentration of calcium ions at the cytoplasmic surface of the membrane. The third, and by far the most common class of K+ channel, was characterized by its sensitivity to ATP. Application of ATP to the cytoplasmic side of the membrane reversibly inhibited this K+ channel in a dose-dependent manner, but had no effect when applied to the external side. The properties of the ATP-sensitive K+ channel appear to be indistinguishable from those of a channel found in rat neonatal β cells. Thus this insulin-secreting cell line should prove valuable in the investigation of the role of K+ channels in the regulation of insulin secretion. J. Endocr. (1986) 109, 201–207


Sign in / Sign up

Export Citation Format

Share Document