Characterization of surface recombination velocity at Si solar cell surface under high injection level

1994 ◽  
Vol 34 (1-4) ◽  
pp. 169-175 ◽  
Author(s):  
T. Uematsu ◽  
Y. Nagata ◽  
H. Ohtsuka ◽  
T. Warabisako ◽  
H. Nomura ◽  
...  
1995 ◽  
Vol 386 ◽  
Author(s):  
A. Kaniava ◽  
U. Menczigar ◽  
J. Vanhellemont ◽  
J. Poortmans ◽  
A. L. P. Rotondaro ◽  
...  

ABSTRACTThe carrier recombination rate in high-quality FZ and Cz silicon substrates is studied by contactless infrared and microwave absorption techniques. Different surface treatments covering a wide range of surface recombination velocity have been used for the separation of bulk and surface recombination components and evaluating of the efficiency of passivation. Limitations of effective lifetime approach are analyzed specific for low and high injection level. Sensitivity limits of the techniques for iron contamination are discussed


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 592
Author(s):  
Myeong Sang Jeong ◽  
Yonghwan Lee ◽  
Ka-Hyun Kim ◽  
Sungjin Choi ◽  
Min Gu Kang ◽  
...  

In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.


MRS Advances ◽  
2018 ◽  
Vol 3 (57-58) ◽  
pp. 3373-3378
Author(s):  
Marc Fouchier ◽  
Maria Fahed ◽  
Erwine Pargon ◽  
Névine Rochat ◽  
Jean-Pierre Landesman ◽  
...  

ABSTRACTThe effect of damage induced by plasma etching on the cathodoluminescence intensity of micron-size InP features is studied. At the etched bottom, it is found that the hard mask stripping process is sufficient to recover the luminescence. Within features, the presence of sidewalls reduces luminescence intensity due to additional non-radiative surface recombinations. For a n-doped sample, a carrier diffusion length of 0.84 μm and a reduced nonradiative surface recombination velocity of 2.58 are calculated. Hydrostatic strain within the etched features is measured using the peak shift of the luminescence signal, while in plane strain anisotropy is obtained from its degree of polarization, both with a resolution of about 100 nm.


2018 ◽  
Vol 09 (02) ◽  
pp. 189-201
Author(s):  
Ousmane Diasse ◽  
Amadou Diao ◽  
Mamadou Wade ◽  
Marcel Sitor Diouf ◽  
Ibrahima Diatta ◽  
...  

2021 ◽  
Author(s):  
Z. Pezeshki ◽  
A. Zekry

The book presents a comprehensive survey about advanced solar cell technologies. Focus is placed on semiconductor materials, solar cell efficiency, improvements in surface recombination velocity, charge density, high ultraviolet (UV) sensitivity, modeling of solar cells etc. The book references 281 original resources with their direct web links for in-depth reading.


1997 ◽  
Vol 477 ◽  
Author(s):  
Y. Ogita ◽  
Y. Uematsu ◽  
H. Daio

ABSTRACTBi-surface photoconductivity decay (BSPCD) method has been useful to obtain the true bulk lifetime and surface recombination velocities in silicon wafers with variously finished surfaces. Thermally oxidized n-type CZ silicon wafers with and without a poly-Si back seal (PBS) were characterized with the BSPCD method using 500 MHz-UHF wave reflection. It has been found that the surface recombination velocity of the PBS surface is, 4027 cm/s while that of the no-PBS surface is 16 cm/s, for example. The very fast surface recombination velocity is attributed to the poly-Si / Si interface character. Moreover, the bulk lifetime calculated in the PBS wafer is much higher than that in the no-PBS one, which reveals the PBS gettering performance for the thermal oxidation induced contamination.


1990 ◽  
Vol 182 ◽  
Author(s):  
R. Pandya ◽  
K. Shahzad

AbstractPhotoluminescence (PL) measurements have been carried out in hydrogenated and as deposited polycrystalline silicon thin films deposited on quartz substrates. Behavior of the PL spectrum as a function of temperature and intensity in the hydrogenated samples is reported. A mechanism that provides a qualitative explanation for the observed PL results is described. In the unhydrogenated sample the signal was much weaker and we were unable to observe any signals over an appreciable range of intensity and temperatures. The cause for much lower signals in the unhydrogenated sample is most likely due to higher surface recombination velocity.


Sign in / Sign up

Export Citation Format

Share Document