Effect of compressive hold time on fatigue life and creep-fatigue damage in alloy 800H at 750°C

1990 ◽  
Vol 24 (11) ◽  
pp. 2145-2150 ◽  
Author(s):  
Z. Mu ◽  
K. Bothe ◽  
V. Gerold
2005 ◽  
Vol 297-300 ◽  
pp. 415-420 ◽  
Author(s):  
Byeong Soo Lim ◽  
Bum Joon Kim ◽  
Sung Jin Song ◽  
Young H. Kim

The application of nondestructive evaluation to creep-fatigue damage was examined in this paper. Generally, as the hold time of static load increases, the degradation of material becomes more rapid and the creep-fatigue life decreases. Therefore, in the evaluation of creep-fatigue strength and life of high-pressure vessel such as main steam pipe at high temperature is very important in power plants. In this study, the creep-fatigue behavior of P92 steel was evaluated nondestructively by the backscattered ultrasound using the creep-fatigue specimens. The results obtained by Rayleigh surface wave of backscattered ultrasound were compared and analyzed with the experimental parameters. Also, the relation between the SDA (slope of degraded area) and creep-fatigue life was examined. From the result of nondestructive test, we suggest that SDA would be used as the new parameter for the evaluation of creep-fatigue damage. As the degradation increased, the SDA decreased and also the creep-fatigue life decreased.


Author(s):  
B. Fournier ◽  
M. Sauzay ◽  
A. Pineau

The 9–12%Cr martensitic steels are candidate materials for several components of the generation IV and fusion nuclear reactors. In these future applications, in addition to long holding periods, cyclic loadings corresponding to start and stopoperations and maintenance must also be taken into account. Creep-fatigue interactions must therefore be considered to design these components. A broad literature review showed that between 20°C and 650°C the fatigue lifetime of these materials followed a unique Manson-Coffin law. Adding a stress-relaxation holding period significantly reduces the fatigue lifetime for total strain lower than Δεt = 0.7%. For higher strain ranges, no significant effect of holding period exists anymore. Moreover, several studies reported a more deleterious effect of compressive hold times compared to tensile holding periods. Additional tests and detailed observations of the damage mechanisms responsible for fracture of pure fatigue, relaxation-fatigue and creep-fatigue tests were carried out on a 9 Cr − 1 Mo modified steel tested at 550°C in air. This material showed a strong work softening effect. The cyclic plastic behavior of the material was studied using an enhanced stress partitioning method to evaluate the kinematic, isotropic and viscous parts of the cyclic stress. It was concluded that in all the cases the observed softening effect was mainly due to the kinematic stress decrease [1]. The effect of a tensile or compressive hold time on fatigue life was also investigated [2, 3]. The deleterious effect of compressive hold times was thus confirmed. No creep cavitation was observed and the fracture was due to the propagation of transgranular fatigue cracks. Two distinct damage mechanisms were identified, depending on the strain range and the hold time : (i) crack initiation occurred due to usual Stage I extrusions/intrusions mechanisms leading to the propagation of a bifurcated crack; (ii) multiple cracks were initiated from the brittle fracture of the oxide layer formed at the free surface of the specimens. It was shown that this oxide failure leads to a penetration of oxygen along the microstructural boundaries enabling the cracks to propagate. Oxide layers grown during tensile (compressive) holding periods are mainly loaded in compression (tension) during the fatigue cycle. The critical strains necessary to crack oxide layers are lower for tensile loading (i.e. compressive holding periods) as shown by finite element and analytical calculations. Therefore compressive holding periods leads more easily to the second and more severe damage mechanism [2, 3]. A model, identified on short crack propagation tests and from experimental endurance curves, gives excellent predictions in pure-fatigue [4]. In creep-fatigue the predicted lifetimes are in the usual range [Nexp/2, 2Nexp] for all strain amplitudes and hold times. In addition, complex phenomena, such as the deleterious effect of compressive holding periods are also reproduced. An attempt is made to show how this model can be extrapolated in temperature to longer hold times.


Author(s):  
Hyeong-Yeon Lee ◽  
Se-Hwan Lee ◽  
Jong-Bum Kim ◽  
Jae-Han Lee

A structural test and evaluation on creep-fatigue damage, and creep-fatigue crack initiation have been carried out for a Mod. 9Cr-1Mo steel structural specimen with weldments. The conservatisms of the design codes of ASME Section III subsection and NH and RCC-MR codes were quantified at the welded joints of Mod.9Cr-1Mo steel and 316L stainless steel with the observed images from the structural test. In creep damage evaluation using the RCC-MR code, isochronous curve has been used rather than directly using the creep law as the RCC-MR specifies. A y-shaped steel specimen of a diameter 500mm, height 440mm and thickness 6.35mm is subjected to creep-fatigue loads with two hours of a hold time at 600°C and a primary nominal stress of 30MPa. The defect assessment procedures of RCC-MR A16 guide do not provide a procedure for Mod.9Cr-1Mo steel yet. In this study application of σd method for the assessment of creep-fatigue crack initiation has been examined for a Mod. 9Cr-1Mo steel structure.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Hyeong-Yeon Lee ◽  
Kee-Nam Song ◽  
Yong-Wan Kim

Evaluation of creep-fatigue damage has been carried out for the hot gas duct (HGD) structure in the nuclear hydrogen development and demonstration (NHDD) plant. The core outlet and inlet temperature of the NHDD plant are 950°C and 490°C, respectively. Case studies on high temperature design codes of the draft code case for Alloy 617, ASME boiler and pressure vessel code section III subsection NH (ASME-NH), and RCC-MR were carried out for the inner tube of the HGD for the candidate materials of Alloy 617 and Alloy 800H. Technical issues in application of the draft code case to a high temperature structure are discussed for the Alloy 617 material. Code comparison between the ASME-NH and RCC-MR for Alloy 800H has been carried out. The candidate material of the outer pressure boundary (cross vessel) of the HGD is Mod.9Cr-1Mo steel. The damage evaluation, according to the ASME-NH and RCC-MR for the cross vessel of Mod.9Cr-1Mo steel, has been conducted and their results were compared.


2006 ◽  
Vol 306-308 ◽  
pp. 1013-1018 ◽  
Author(s):  
Byeong Soo Lim ◽  
Bum Joon Kim

This paper investigates the influence of various hold times on creep-fatigue life at 600oC. The relationship between the crack growth behavior and hold time was studied, and a metallurigical investigation to examine the effect of creep was performed. To examine the relationship between creep-fatigue life and microvoids, the fraction of micro-voids/cavity area was analyzed at the crack tip. The crack growth rate of the HAZ was found to be faster than that of base metal while creep-fatigue life was found to be shorter. Finally, it can be stated that the fraction of cavity area, Fca could be utilized for the life prediction under creep-fatigue interaction. As the hold time increased, the creep damage was observed along the prior austenite grain boundaries and inside and boundaries of delta-ferrite.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4237-4242
Author(s):  
BUMJOON KIM ◽  
BYEONGSOO LIM

The components of power plant such as main steam pipe and gas turbines are operated under static and cyclic load conditions. As the period of static load increases, the service life of these components decreases. Generally, the increase of cyclic load results in fatigue damage and the increase of static load period results in the metallurgical degradation by the effect of creep. Under the creep-fatigue interaction, cavities cause rapid degradation of material and decreases the creep-fatigue life of high temperature components. In this paper, creep-fatigue tests were performed to investigate the relationship between the cavity and creep-fatigue life under various tensile hold times. Test materials were HAZ and base metal of P122 (12 Cr -2 W ) alloy weldment. The effect of hold times on the cavity damage was examined and the fraction of cavity area was analyzed. From the linear relationship of Fca (fraction of cavity area) and experimental life, a new parameter for life evaluation, Fca, was introduced and the creep-fatigue life was predicted by Fca. Good agreement was found between experimental and predicted life. Under the same hold time condition, the Fca of HAZ was greater than that of base metal while the creep-fatigue life of HAZ was shorter than that of base metal.


1991 ◽  
Vol 226 ◽  
Author(s):  
Semyon Vaynhan ◽  
Morris E. Fine

AbstractThis paper discusses the effects of the most important variables during isothermal fatigue such as strain range, ramp time, tensile and compressive hold times, and temperature on fatigue life of near–eutectic 62Sn–36Pb–2Ag solder at strain ranges below 3.0%. The Coffin-Manson relation does not hold for 62Sn–36Pb–2Ag solder below 1% strain range. Decreasing frequency below 10-2 in no-hold tests reduces the number of cycles to failure. Tensile hold time or compressive hold time alone in the cycle dramatically reduce the number of cycles to failure. Increase of hold time over a few minutes leads to saturation of Nf. Combined tensile and compressive hold times affect the fatigue life of this solder less than either tensile or compressive hold alone. The effect of hold times on fatigue life is much stronger than the effect of ramp time. Practically no ramp time effect was observed in tests with tensile hold times. Very little effect of temperature over the range 25 to 80°C on fatigue life of 62Sn–36Pb–2Ag solder was observed when tested at total strain range of 1%.


Sign in / Sign up

Export Citation Format

Share Document