MOLECULAR REGULATORY MECHANISMS OF NYCTOHEMERAL RHYTHMS IN HEPATIC CELL DIVISION AND FUNCTION

Author(s):  
H. Barbason ◽  
F. De Parmentier ◽  
J. Van Cantfort
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.


Medicina ◽  
2018 ◽  
Vol 54 (4) ◽  
pp. 53 ◽  
Author(s):  
Ieva Antanavičiūtė ◽  
Paulius Gibieža ◽  
Rytis Prekeris ◽  
Vytenis Skeberdis

Faithful cell division is crucial for successful proliferation, differentiation, and development of cells, tissue homeostasis, and preservation of genomic integrity. Cytokinesis is a terminal stage of cell division, leaving two genetically identical daughter cells connected by an intercellular bridge (ICB) containing the midbody (MB), a large protein-rich organelle, in the middle. Cell division may result in asymmetric or symmetric abscission of the ICB. In the first case, the ICB is severed on the one side of the MB, and the MB is inherited by the opposite daughter cell. In the second case, the MB is cut from both sides, expelled into the extracellular space, and later it can be engulfed by surrounding cells. Cells with lower autophagic activity, such as stem cells and cancer stem cells, are inclined to accumulate MBs. Inherited MBs affect cell polarity, modulate intra- and intercellular communication, enhance pluripotency of stem cells, and increase tumorigenic potential of cancer cells. In this review, we briefly summarize the latest knowledge on MB formation, inheritance, degradation, and function, and in addition, present and discuss our recent findings on the electrical and chemical communication of cells connected through the MB-containing ICB.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Thomas S McAlear ◽  
Susanne Bechstedt

Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.


2020 ◽  
Author(s):  
Nolan K Maier ◽  
Jun Ma ◽  
Michael A Lampson ◽  
Iain M Cheeseman

SummaryTo generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we explore the regulatory mechanisms that differentially control meiotic events. We demonstrate that the protease Separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. In contrast to cohesin, which is inactivated by Separase proteolysis, cleaved Meikin remains functional, but results in a distinct activity state. Full-length Meikin and the C-terminal Meikin Separase-cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I both result in defective meiosis II chromosome alignment. Thus, Separase cleavage of Meikin creates an irreversible molecular switch to rewire the cell division machinery at the meiosis I/II transition.


1987 ◽  
Vol 7 (8) ◽  
pp. 2977-2980
Author(s):  
E A Fyrberg ◽  
C C Karlik

We describe a genetic transformation system which should prove useful for investigating tropomyosin assembly and function. Muscle abnormalities associated with a defective tropomyosin allele were corrected by integrating the wild-type gene into germ line chromosomes. The transformation protocol permits application of directed mutagenesis techniques in investigations of contractile regulatory mechanisms.


2003 ◽  
Vol 15 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Marcelo Carnier Dornelas

The elaboration of plant form and function depends on the ability of a plant cell to divide and differentiate. The decisions of individual cells to enter the cell cycle, maintain proliferation competence, become quiescent, expand, differentiate, or die depend on cell-to-cell communication and on the perception of various signals. These signals can include hormones, nutrients, light, temperature, and internal positional and developmental cues. In recent years, progress has been made in understanding the molecular control of plant pattern formation, especially in the model plant Arabidopsis thaliana. Furthermore, specific genes have been found that are necessary for normal pattern formation and the control of the rates of cell division and differentiation. Cloning of these genes is revealing the molecular basis of plant pattern formation and the key players on plant signal transduction systems.


Sign in / Sign up

Export Citation Format

Share Document