Evaluation of Protein Sequencing Core Facilities: Design, Characterization, and Results from a Test Sample (ABRF-91SEQ)

Author(s):  
Dan L. Crimmins ◽  
Gregory A. Grant ◽  
Liane M. Mende-Mueller ◽  
Ronald L. Niece ◽  
Clive Slaughter ◽  
...  
Author(s):  
Ronald L. Niece ◽  
Kenneth R. Williams ◽  
Cynthia L. Wadsworth ◽  
James Elliott ◽  
Kathryn L. Stone ◽  
...  

2021 ◽  
Author(s):  
Ilya Olevsko ◽  
Kaitlin Szederkenyi ◽  
Jennifer Corridon ◽  
Aaron Au ◽  
Brigitte Delhomme ◽  
...  

ABSTRACTFluorescence standards allow for quality control and for the comparison of data sets across instruments and laboratories in applications of quantitative fluorescence. For example, users of microscopy core facilities expect a homogenous and time-invariant illumination and a uniform detection sensitivity, which are prerequisites for quantitative imaging analysis, particle tracking or fluorometric pH or Ca2+-concentration measurements. Similarly, confirming the three-dimensional (3-D) resolution of optical sectioning micro-scopes prior to volumetric reconstructions calls for a regular calibration with a standardised point source. Typically, the test samples required for such calibration measurements are different ones, and they depend much on the very microscope technique used. Also, the ever-increasing choice among these techniques increases the demand for comparison and metrology across instruments. Here, we advocate and demonstrate the multiple uses of a surprisingly versatile and simple 3-D test sample that can complement existing and much more expensive calibration samples: simple commercial tissue paper labelled with a fluorescent highlighter pen. We provide relevant sample characteristics and show examples ranging from the sub-µm to cm scale, acquired on epifluorescence, confocal, image scanning, two-photon (2P) and light-sheet microscopes.Graphical abstractPyranine-labeled tissue paper, imaged upon 405-nm epifluorescence excitation through a 455LP LP dichroic and 465LP emission filter. Objective ×20/NA0.25. Overlaid are the normalised absorbance (dashed) and emission spectra (through line), respectively. In the present work we show that this “primitive” and inexpensive three-dimensional (3-D) test sample is a surprisingly versatile and powerful tool for quality assessment, comparison across microscopes as well as routine metrology for optical sectioning techniques, both for research labs and imaging core facilities.Research highlights-highlighter-pen marked tissue paper is a surprisingly powerful and versatile test sample for 3-D fluorescence microscopies-standard tissue paper presents features ranging from 400 nm to centimetres-our sample can simultaneously be used for testing intensity, field homogeneity, resolution, optical sectioning and image contrast-it is easy to prepare, versatile, photostable and inexpensive


Author(s):  
David W. Speicher ◽  
Gregory A. Grant ◽  
Ronald L. Niece ◽  
Russell W. Blacher ◽  
Audree V. Fowler ◽  
...  

1992 ◽  
Vol 67 (01) ◽  
pp. 046-049 ◽  
Author(s):  
H A Guglielmone ◽  
M A Vides

SummaryA simple and fast method for the quantitative determination of protein C activity in plasma is here described. The first step consists in the conversion of protein C in the test sample into activated protein C by means of an activator isolated from Southern Copperhead venom. Subsequently, the degradation of factor Va, in presence of protein C-deficient plasma, is measured by the prolongation of the prothrombin time which is proportional to the amount of protein C in the sample. The dose-response curve showed a linear relationship from 6 to 150% protein C activity and the inter- and intra-assay reproducibility was 3.5% and 5.6% respectively. In normal subjects, a mean of protein C level of 98 ± 15% of normal pooled plasma was found. Comparison with the anticoagulant assay in samples of patients with oral anticoagulant, liver cirrhosis, disseminated intravascular coagulation and severe preeclampsia revealed an excellent correlation (r = 0.94, p <0.001). Also, a similar correlation (r = 0.93, p <0.001) existed between amidolytic assay and the method here proposed for all the samples studied without including the oral anticoagulant group. These results allowed us to infer that this method evaluates the ability of protein C to interact with protein S, phospholipids, calcium ions and factor Va.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 24-28
Author(s):  
CORY JAY WILSON ◽  
BENJAMIN FRANK

TAPPI test T811 is the specified method to ascertain ECT relative to box manufacturer’s certification compliance of corrugated fiberboard under Rule 41/ Alternate Item 222. T811 test sample heights were derived from typical board constructions at the time of the test method’s initial development. New, smaller flute sizes have since been developed, and the use of lighter weight boards has become more common. The T811 test method includes sample specifications for typical A-flute, B-flute, and C-flute singlewall (and doublewall and triplewall) structures, but not for newer thinner E-flute or F-flute structures. This research explores the relationship of ECT sample height to measured compressive load, in an effort to determine valid E-flute and F-flute ECT sample heights for use with the T811 method. Through this process, it identifies challenges present in our use of current ECT test methods as a measure of intrinsic compressive strength for smaller flute structures. The data does not support the use of TAPPI T 811 for ECT measurement for E and F flute structures, and demonstrates inconsistencies with current height specifi-cations for some lightweight B flute.


Author(s):  
M.A. Magomedgadzhieva ◽  
◽  
G.S. Oganov ◽  
I.B. Mitrofanov ◽  
A.M. Karpov ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 73-82
Author(s):  
А. Trubnikova ◽  
О. Chabanova ◽  
S. Bondar ◽  
Т. Sharakhmatova ◽  
Т. Nedobijchuk

Optimization of the formulation of synbiotic yogurt ice cream low-lactose using lactose-free protein concentrate of buttermilk and yogurt with low lactose content is the goal of expanding the range of low-lactose dairy products and improving the functional and health properties of ice cream. Low-lactose ice cream formulation optimization was performed using a gradient numerical method, namely conjugated gradients (Conjugate Gradient). The optimization algorithm is implemented in Mathcad. An array of data with a set of indicators for the choice of a rational ratio of lactose-free protein concentrate of buttermilk and yogurt base and inulin content for ice cream mixtures is presented. The influence of the ratio of the main components of the mixtures on the foaming ability, which determines the quality of the finished product, has been studied. An important indicator is taken into account - the concentration factor of buttermilk, which is additionally purified from lactose by diafiltration. The graphic material presented in the work clearly demonstrates that the rational ratio of yogurt base and lactose-free protein concentrate of buttermilk, obtained by ultrafiltration with diafiltration purification at a concentration factor of FC = 5 is 40.6: 59.4. The content of additional components included in the recipe of a new type of ice cream is optimized in the work, the mass fractions of which were: inulin - 3.69 %; lactulose – 1 %; ginger - 0.3 %; citric acid - 0.15 %; stabilization system - 0.2 %. The chemical composition and quality indicators of the mixture for ice cream low-lactose synbiotic yogurt, consisting of raw materials in the optimal ratio, were determined. The lactose content in the test sample of the ice cream mixture was 0.99%, the antioxidant activity was 3.1 times higher than in the mixture for traditional yogurt ice cream. The most likely number of lactic acid microorganisms, CFU / cm3 is (2.8 ± 0.9) · 108, the number of bifidobacteria, CFU / cm3 is (2.5 ± 0.2) · 109. The results of the research will be implemented in dairy companies in the production of ice cream.


Sign in / Sign up

Export Citation Format

Share Document