GLYCOFORM, GLYCOTYPE LINKAGE AND BRANCHING DETAIL OF THE CD2 ADHESION DOMAIN BY DESOLVATION MASS SPECTROMETRY: SFCI-MS AND ESI-MS

Author(s):  
Bruce B. Reinhold ◽  
Ellis L. Reinherz ◽  
Vernon N. Reinhold ◽  
Maria H. Knoppers ◽  
Michael A. Recny
Keyword(s):  
The Analyst ◽  
2015 ◽  
Vol 140 (8) ◽  
pp. 2623-2627 ◽  
Author(s):  
Gongyu Li ◽  
Jiying Pei ◽  
Yue Yin ◽  
Guangming Huang

Enhanced corona discharge was employed for in-spray dissociation of disulfide bonds, facilitating disulfide-containing peptide sequencing with ESI-MS/MS.


Author(s):  
Jinglong Wang ◽  
Dandan Zheng ◽  
Nan Xu ◽  
Chao Zhang ◽  
Yingzi Wang ◽  
...  

AbstractTo realize the attribution and identification of absorbed components in rat serum after oral administration of Erhuang decoction prepared by semi-bionic enzyme extraction method, the fingerprints of serum samples were established using a HPLC-DAD-ESI-MS method. Thirty-two peaks in Erhuang decoction and 24 peaks in rat serum after oral administration of Erhuang decoction were detected. Among the 24 peaks detected in rat serum, 25 compounds were identified by comparing the retention time and mass spectrometry data with that of reference compounds, or by mass spectrometry analysis and retrieving the reference literatures. Among the identified 25 compounds in vivo, 24 were the original form of compounds absorbed from the detected compounds in vitro, and one was the metabolite compounds of licorice. By analyzing the mass spectrometry or ultraviolet absorption characteristics, other unidentified compounds in vivo were deduced to be the endogenous metabolites in serum or the original form and metabolites of the compounds existed in vivo. Results indicated that HPLC-DAD-ESI-MS is suitable for identifying the bioactive constituents in serum after oral administration of Erhuang decoction, and the findings would be beneficial to further research and development of the pharmacodynamic substance base of Erhuang decoction.


Toxics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 64 ◽  
Author(s):  
Renata Raina-Fulton ◽  
Aisha Mohamad

The extraction of powdered nutraceuticals is challenging due to the low water content and high concentration of matrix components that can lead to significant matrix effects in liquid chromatography-positive ion electrospray ionization-tandem mass spectrometry (LC-ESI+-MS/MS). In this study we assess the feasibility of using pressurized solvent extraction with ethyl acetate to reduce the co-extraction of polar matrix components. Pigment attributed to chlorophyll was removed with in-cell clean-up utilizing Anasorb 747, Florisil®, and C18. Visible inspection of the extracts showed that pigment was removed from matcha, a powdered green tea sample. Pressurized solvent extraction with in-cell clean-up can be utilized to remove pigments from powdered samples such as nutraceuticals. Average matrix effect of the 32 target analytes that observed mass spectrometric signal suppression or soft MS signal enhancement was −41 ± 19% with the majority of analytes having a protonated molecular ion with m/z of 250 to 412. As generally moderate signal suppression was observed for conazole fungicides and structurally related compounds analyzed by LC-ESI+-MS/MS, it is recommended that matrix matched or standard addition calibration is used for quantitation. Catachins, other polyphenols, and caffeine are expected to contribute to the matrix effects observed in LC-ESI+-MS/MS. Diniconazole, fenbuconazole, and tebufenozide were the only target analytes with severe MS signal enhancement. Low levels (0.002–0.004 mg/kg) of prothioconazole-desthio and flusilazole were detected, along with trace levels of tebuthiuron in matcha.


Sign in / Sign up

Export Citation Format

Share Document