Isolation, Culture, and Regeneration of Potato Leaf Protoplasts from Plants Preconditioned in Vitro

Author(s):  
Elias A. Shahin
Keyword(s):  
2015 ◽  
Vol 43 (05) ◽  
pp. 915-925 ◽  
Author(s):  
Shou-Lun Lee ◽  
Hsien-Kuang Lee ◽  
Ting-Yu Chin ◽  
Ssu-Chieh Tu ◽  
Ming-Hsun Kuo ◽  
...  

Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program.


PROTOPLASMA ◽  
1989 ◽  
Vol 150 (1) ◽  
pp. 48-53 ◽  
Author(s):  
H. Wang ◽  
A. J. Cutler ◽  
M. Saleem ◽  
L. C. Fowke

1998 ◽  
Vol 17 (10) ◽  
pp. 819-821 ◽  
Author(s):  
Y.-J. Zhang ◽  
Y.-Q. Qian ◽  
X.-J. Mu ◽  
Q.-G. Cai ◽  
Y.-L. Zhou ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1385-1391 ◽  
Author(s):  
N. A. Barkley ◽  
D. L. Pinnow ◽  
M. L. Wang ◽  
K. S. Ling ◽  
R. L. Jarret

The United States Department of Agriculture–Agricultural Research Service sweetpotato (Ipomoea batatas) germplasm collection contains accessions that were initially collected from various countries worldwide. These materials have been maintained and distributed as in vitro plantlets since the mid-1980s. The status of viral infection by the emerging Sweet potato leaf curl virus (SPLCV) and other Begomovirus spp. in this germplasm has yet to be determined. In order to minimize the potential distribution of virus-infected clones, all accessions in the collection were tested for SPLCV using a real-time polymerase chain reaction assay. In total, 47 of 701 accessions of in vitro plantlets tested positive for SPLCV. The presence of SPLCV detected in these materials was confirmed via biological indexing using the indicator plants I. nil and I. muricata. Symptoms appeared more rapidly on I. muricata than on I. nil. Nucleotide polymorphisms among the isolates were evaluated by sequencing the AV1 coat protein gene from 24 SPLCV-infected accessions. The results revealed that the SPLCV isolates shared high sequence identity. Ten nucleotide substitutions were identified, most of which were synonymous changes. Phylogenetic analysis was conducted on those 24 SPLCV isolates in combination with six described SPLCV species and various SPLCV strains from GenBank to evaluate the relationships among viral species or strains. The results from this analysis indicated that most of the AV1 genes derived from previously classified SPLCV species clustered together, some of which formed well-supported monophyletic clades, further supporting the current taxonomy. Overall, identification of SPLCV-infected germplasm will allow approaches to be employed to eliminate the virus from the collection and limit the distribution of infected materials.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1283-1289 ◽  
Author(s):  
J. M. Stein ◽  
W. W. Kirk

The sensitivities of 11 isolates of Phytophthora infestans to dimethomorph were examined at all stages of the asexual life cycle and when inoculated onto potato leaf discs. In vitro zoospore encystment and cyst germination were highly sensitive to dimethomorph with 50% reduction of mycelial growth and cyst germination (EC50) values for most isolates <0.20 μg/ml, whereas direct sporangia germination and in vitro hyphal growth and sporulation were less sensitive (means of 0.45 and 0.22 μg/ml, respectively). Zoosporogenesis was not significantly inhibited at the maximum dimethomorph concentration examined, 10 μg/ml. Significant differences (Fisher's least significant difference, P = 0.05) in the EC50 values were present between isolates for all stages of the asexual life cycle, except direct sporangia germination and zoosporogenesis. Sensitivity ratios between the least- and most-sensitive isolates were 6.11, 12.14, 12.36, and 10.56 for hyphal growth, in vitro sporulation, zoospore encystment, and cyst germination, respectively. Application of dimethomorph at 1,000 μg/ml to potato leaf discs at 24 or 48 h before inoculation completely inhibited symptom incidence for most isolates, whereas application after inoculation generally was not significantly different from the untreated control, regardless of concentration. Sporulation from leaf discs treated with dimethomorph at 24 or 48 h after inoculation was completely inhibited for all isolates with dimethomorph at 1,000 μg/ml, even when symptom incidence was not significantly reduced.


2003 ◽  
Vol 16 (5) ◽  
pp. 405-410 ◽  
Author(s):  
Deyin Guo ◽  
Carl Spetz ◽  
Mart Saarma ◽  
Jari P. T. Valkonen

Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions.


2014 ◽  
Vol 59 (4) ◽  
pp. 498-504 ◽  
Author(s):  
Jung-Yoon Yi ◽  
◽  
Gi-An Lee ◽  
Jong-Wook Jeong ◽  
Sok-Young Lee ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
pp. 43-48
Author(s):  
Sempurna Ginting ◽  
Tri Sunardi ◽  
Chaincin Buana Sari ◽  
Risky Hadi Wibowo

Evaluation of various natural diets for mass rearing of Spodoptera frugiperda J.E Smith (Lepidoptera: Noctuidae). Spodoptera frugiperda is one of the pests that attack corn in Indonesia. This study aimed to evaluate the most suitable diet for rearing of S. frugiperda from various natural diets. The study was conducted in vitro. The treatments were consisted of variation on S. frugiperda natural diets, such as maize leaf, green mustard leaf, water spinach, sweet potato leaf, sugar cane leaf, and soybeans leaf. The observed variables were life cycle period, pupa size, and pupa weight. The results showed that the shortest life cycle period was on corn leaves diet (40.92 days), and the longest was on sugarcane leaves (45.01 days). The longest size of pupa were S. frugiperda on mustard leaves diet (12.86 mm) and corn leaves (12.56 mm), The heaviest pupa weights were observed in S. frugiperda on mustard leaves diet (0.18 mg), and corn leaves (0.16 mg). Based on the data, it could be concluded that corn leaves were the most suitable type of diet for the growth and development of S. frugiperda.


2020 ◽  
Vol 8 (8) ◽  
pp. 1144
Author(s):  
Abhishek Anand ◽  
Delphine Chinchilla ◽  
Christopher Tan ◽  
Laurent Mène-Saffrané ◽  
Floriane L’Haridon ◽  
...  

Plants face many biotic and abiotic challenges in nature; one of them is attack by disease-causing microbes. Phytophthora infestans, the causal agent of late blight is one of the most prominent pathogens of the potato responsible for multi-billion-dollar losses every year. We have previously reported that potato-associated Pseudomonas strains inhibited P. infestans at various developmental stages. A comparative genomics approach identified several factors putatively involved in this anti-oomycete activity, among which was the production of hydrogen cyanide (HCN). Here, we report the relative contribution of HCN emission to the overall anti-Phytophthora activity of two cyanogenic Pseudomonas strains, P. putida R32 and P. chlororaphis R47. To quantify this contribution, we generated HCN-negative mutants (Δhcn) and compared their activities to those of their respective wild types in different experiments assessing P. infestans mycelial growth, zoospore germination, and infection of potato leaf disks. Using in vitro experiments allowing only volatile-mediated interactions, we observed that HCN accounted for most of the mycelial growth inhibition (57% in R47 and 80% in R32). However, when allowing both volatile and diffusible compound-mediated interactions, HCN only accounted for 1% (R47) and 18% (R32) of mycelial growth inhibition. Likewise, both mutants inhibited zoospore germination in a similar way as their respective wild types. More importantly, leaf disk experiments showed that both wild-type and Δhcn strains of R47 and R32 were able to limit P. infestans infection to a similar extent. Our results suggest that while HCN is a major contributor to the in vitro volatile-mediated restriction of P. infestans mycelial growth, it does not play a major role in the inhibition of other disease-related features such as zoospore germination or infection of plant tissues.


Sign in / Sign up

Export Citation Format

Share Document