Phytanic Acid Metabolism in Health and Disease

Author(s):  
Ronald J.A. Wanders
Author(s):  
Ronald J.A. Wanders ◽  
Jasper Komen ◽  
Sacha Ferdinandusse

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1179
Author(s):  
Aleksandra Stamenkovic ◽  
Riya Ganguly ◽  
Michel Aliani ◽  
Amir Ravandi ◽  
Grant N. Pierce

Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart. It is the primary source of myocardial energy in control conditions. Its role changes dramatically in disease states in the heart, but the pathologic role these fatty acids play depends upon the type of cardiovascular disease and the type of fatty acid. However, no matter how good a food is for one’s health, its taste will ultimately become a deciding factor in its influence on human health. No food will provide health benefits if it is not ingested. This review discusses the taste characteristics of culinary oils that contain fatty acids and how these fatty acids affect the performance of the heart during healthy and diseased conditions. The contrasting contributions that different fatty acid molecules have in either promoting cardiac pathologies or protecting the heart from cardiovascular disease is also highlighted in this article.


Methods ◽  
2018 ◽  
Vol 149 ◽  
pp. 49-58 ◽  
Author(s):  
Benjamin H. Mullish ◽  
Alexandros Pechlivanis ◽  
Grace F. Barker ◽  
Mark R. Thursz ◽  
Julian R. Marchesi ◽  
...  

2019 ◽  
Author(s):  
Agnieszka B. Wegrzyn ◽  
Katharina Herzog ◽  
Albert Gerding ◽  
Marcel Kwiatkowski ◽  
Justina C. Wolters ◽  
...  

ABSTRACTRefsum disease is an inborn error of metabolism that is characterised by a defect in peroxisomal α-oxidation of the branched-chain fatty acid phytanic acid. The disorder presents with late-onset progressive retinitis pigmentosa and polyneuropathy and can be diagnosed biochemically by elevated levels of phytanic acid in plasma and tissues of patients. To date, no cure exists for Refsum disease, but phytanic acid levels in patients can be reduced by plasmapheresis and a strict diet.In this study, we reconstructed a fibroblast-specific genome-scale model based on the recently published, FAD-curated model, based on Recon3D reconstruction. We used transcriptomics (available via GEO database with identifier GSE138379), metabolomics, and proteomics data (available via ProteomeXchange with identifier PXD015518), which we obtained from healthy controls and Refsum disease patient fibroblasts incubated with phytol, a precursor of phytanic acid.Our model correctly represents the metabolism of phytanic acid and displays fibroblast-specific metabolic functions. Using this model, we investigated the metabolic phenotype of Refsum disease at the genome-scale, and we studied the effect of phytanic acid on cell metabolism. We identified 53 metabolites that were predicted to discriminate between Healthy and Refsum disease patients, several of which with a link to amino acid metabolism. Ultimately, these insights in metabolic changes may provide leads for pathophysiology and therapy.


Author(s):  
Matthew D. Lloyd ◽  
Mridul Mukherji ◽  
Nadia J. Kershaw ◽  
Winnie Chien ◽  
Anthony S. Wierzbicki ◽  
...  

2019 ◽  
Vol 81 (1) ◽  
pp. 483-503 ◽  
Author(s):  
Xuri Li ◽  
Anil Kumar ◽  
Peter Carmeliet

Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.


Sign in / Sign up

Export Citation Format

Share Document