Ostracoda in extreme-wave deposits

Author(s):  
Chris Gouramanis
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


Author(s):  
Xin Lu ◽  
Pankaj Kumar ◽  
Anand Bahuguni ◽  
Yanling Wu

The design of offshore structures for extreme/abnormal waves assumes that there is sufficient air gap such that waves will not hit the platform deck. Due to inaccuracies in the predictions of extreme wave crests in addition to settlement or sea-level increases, the required air gap between the crest of the extreme wave and the deck is often inadequate in existing platforms and therefore wave-in-deck loads need to be considered when assessing the integrity of such platforms. The problem of wave-in-deck loading involves very complex physics and demands intensive study. In the Computational Fluid Mechanics (CFD) approach, two critical issues must be addressed, namely the efficient, realistic numerical wave maker and the accurate free surface capturing methodology. Most reported CFD research on wave-in-deck loads consider regular waves only, for instance the Stokes fifth-order waves. They are, however, recognized by designers as approximate approaches since “real world” sea states consist of random irregular waves. In our work, we report a recently developed focused extreme wave maker based on the NewWave theory. This model can better approximate the “real world” conditions, and is more efficient than conventional random wave makers. It is able to efficiently generate targeted waves at a prescribed time and location. The work is implemented and integrated with OpenFOAM, an open source platform that receives more and more attention in a wide range of industrial applications. We will describe the developed numerical method of predicting highly non-linear wave-in-deck loads in the time domain. The model’s capability is firstly demonstrated against 3D model testing experiments on a fixed block with various deck orientations under random waves. A detailed loading analysis is conducted and compared with available numerical and measurement data. It is then applied to an extreme wave loading test on a selected bridge with multiple under-deck girders. The waves are focused extreme irregular waves derived from NewWave theory and JONSWAP spectra.


Author(s):  
Antonio Mikulić ◽  
Marko Katalinić ◽  
Maro Ćorak ◽  
Joško Parunov

Author(s):  
Andrew Cornett

Many deck-on-pile structures are located in shallow water depths at elevations low enough to be inundated by large waves during intense storms or tsunami. Many researchers have studied wave-in-deck loads over the past decade using a variety of theoretical, experimental, and numerical methods. Wave-in-deck loads on various pile supported coastal structures such as jetties, piers, wharves and bridges have been studied by Tirindelli et al. (2003), Cuomo et al. (2007, 2009), Murali et al. (2009), and Meng et al. (2010). All these authors analyzed data from scale model tests to investigate the pressures and loads on beam and deck elements subject to wave impact under various conditions. Wavein- deck loads on fixed offshore structures have been studied by Murray et al. (1997), Finnigan et al. (1997), Bea et al. (1999, 2001), Baarholm et al. (2004, 2009), and Raaij et al. (2007). These authors have studied both simplified and realistic deck structures using a mixture of theoretical analysis and model tests. Other researchers, including Kendon et al. (2010), Schellin et al. (2009), Lande et al. (2011) and Wemmenhove et al. (2011) have demonstrated that various CFD methods can be used to simulate the interaction of extreme waves with both simple and more realistic deck structures, and predict wave-in-deck pressures and loads.


Author(s):  
Kasper Wåsjø ◽  
Terje P. Stavang ◽  
Tore H. Søreide

Experience from model tests has initiated a growing attention towards extreme wave slam as a critical load situation for offshore large volume structures. Most of the problem is related to the local slam pressure, which may go up to several MPa’s for 100-year and 10 000-year waves. The paper deals with modeling techniques for marine concrete structures under extreme slam loading from waves where dynamic effects together with material softening play a major role for the response. Different analysis approaches for ultimate limit state (ULS) and accidental limit state (ALS) controls are discussed in view of reliability philosophy as basis for conventional design approach. The present paper is devoted to the local impact scenario and the alternative approaches for response and capacity control involving non-linear time domain analyses. Conventional design schemes as based on linear elastic models for response calculation together with code specified capacity control often come out more conservative than non-linear approach. The paper demonstrates by case studies how softening of the structure in general reduces the response in terms of section forces. A key issue when going from conventional linear approaches into non-linear techniques is to still keep an acceptable reliability level on the capacity control. Load and material factors are normally based on structures with limited non-linearity where linear response modeling is representative. Implementing non-linear material model in time domain analysis has a major challenge in limiting the sensitivity in response and capacity calculation. The paper demonstrates the way material model of concrete affects the section forces to go into local capacity control, and concludes on needed sensitivity analyses. Practical approaches on the concrete slam problem together with resulting utilizations from the control are demonstrated. The full non-linear technique by response and capacity control in one analysis is also handled, using average material parameters and justifying safety factors for the effect of implementing characteristic lower strength of concrete in the capacity. The paper ends up in a recommendation on non-linear time domain analysis procedure for typically slam problems. A discussion is also given on applicable design codes with attention to non-linear analysis.


2015 ◽  
Vol 27 (1) ◽  
pp. 38-51 ◽  
Author(s):  
Andrew Cornett ◽  
Mark Hecimovich ◽  
Ioan Nistor

Sign in / Sign up

Export Citation Format

Share Document