Linking bone cells, aging, and oxidative stress: Osteoblasts, osteoclasts, osteocytes, and bone marrow cells

Aging ◽  
2020 ◽  
pp. 61-71
Author(s):  
Juan A. Ardura ◽  
Luis Álvarez-Carrión ◽  
Arancha R. Gortázar ◽  
Verónica Alonso
2008 ◽  
Vol 93 (4) ◽  
pp. 1398-1401 ◽  
Author(s):  
Brya G. Matthews ◽  
Muhammad A. Afzal ◽  
Philip D. Minor ◽  
Usha Bava ◽  
Karen E. Callon ◽  
...  

Abstract Background: Paget’s disease is a condition of focal accelerated bone turnover. Electron-microscopy investigations of osteoclasts from pagetic lesions have identified nuclear inclusion bodies that have a similar appearance to viral nucleocapsid particles. Subsequently, RNA from several paramyxoviruses has been detected in pagetic tissue, and it was suggested that these viruses, in particular measles, might play a role in the etiology of Paget’s disease. We have tested for measles virus sequences in osteoblasts and bone marrow cells collected from pagetic lesions and healthy bone. Methods: Bone and bone marrow samples were taken from Paget’s patients and control subjects, and cells were cultured from each of these tissues. RNA was extracted from 13 osteoblast cultures and 13 cultures of bone marrow cells derived from pagetic lesions, and from 26 and 23 control osteoblast and bone marrow cultures, respectively. These samples were sourced from 22 patients with Paget’s disease and 31 controls. RT-PCR-nested PCR amplification was used for the detection of the genes for the measles nucleocapsid and matrix proteins. Results: Measles virus sequences were not detected in any of the pagetic or control samples. However, measles virus sequences were identified in samples of a measles virus culture isolate included as a positive control, and in a brain sample from a patient with subacute sclerosing panencephalitis, a condition associated with chronic measles infection. Conclusion: The results of the study do not support the hypothesis that measles virus plays a role in the pathogenesis of Paget’s disease.


2017 ◽  
Vol 149 (2) ◽  
pp. 127-141 ◽  
Author(s):  
Sabiha M. Ansari ◽  
Quaiser Saquib ◽  
Sabry M. Attia ◽  
Eslam M. Abdel-Salam ◽  
Hend A. Alwathnani ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1492-1492
Author(s):  
Akil Merchant ◽  
Anju Singh ◽  
Giselle Joseph ◽  
Qiuju Wang ◽  
Ping Zhang ◽  
...  

Abstract Abstract 1492 Poster Board I-515 Previous studies have established an important role for reactive oxygen species (ROS) in regulating the function and life-span of hematopoietic stem cells (HSC). Nuclear factor erythroid-2–related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates cellular responses to ROS and detoxification pathways implicated in chemoresistance, however, its role in normal stem cells is unknown. We analyzed Nrf2null mice and found increased total bone marrow cellularity, cKit+Sca1+Lin− (KSL) stem-progenitor cells, and long-term quiescent HSC (CD34−KSL) compared to wild type mice (p<0.05). Transplantation of equal numbers of KSL cells from Nrf2wt and Nrf2null resulted in a five-fold decrease in peripheral blood chimerism from Nrf2null derived cells at 16 weeks (15% wild type vs. 3% null, p<0.05). Unlike other models of deficiencies in genes associated with ROS handling, such as ATM or the FoxO family of transcription factors, basal ROS levels were not elevated in Nrf2null HSC. However, Nrf2null bone marrow cells demonstrated increased sensitivity to induced oxidative stress and in vitro treatment with H2O2 resulted in a 2 fold decrease in colony formation in methylcellulose. We also examined the in vivo sensitivity of Nrf2null cells to oxidative stress by irradiating (400 rads) stably chimeric mice 20 weeks following transplantation with either Nrf2wt or Nrf2null HSC. Mice receiving Nrf2null HSC demonstrated a 50% decrease in peripheral blood chimerism at 4 months following radiation compared to no change in Nrf2wt recipients (p<0.05) confirming that loss of Nrf2 leads to increased sensitivity to oxidative stress. Microarray gene expression analysis from Nrf2wt and Nrf2null mice revealed down regulation of the G-CSF cytokine receptor in Nrf2null HSC and suggested that defective cytokine signaling may contribute to the HSC dysfunction seen in Nrf2null bone marrow cells. To test this hypothesis, we attempted to rescue the function of Nrf2null HSC by treating mice with exogenous G-CSF. Nrf2wt and Nrf2null mice were treated with one week of daily G-CSF and then HSC were harvested and transplanted. In contrast to the defects in engraftment of untreated Nrf2null HSC, there was no significant difference in peripheral blood chimerism following transplantation of G-CSF treated Nrf2wt or Nrf2null HSC, thus demonstrating that G-CSF treatment could rescue the HSC defect in mutant mice. In conclusion, the Nrf2 transcription factor appears to be a novel and essential regulator of normal HSC function through the modulation of oxidative stress response and cytokine signaling. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Xian-Zhe Dong ◽  
Yu-Ning Wang ◽  
Xiao Tan ◽  
Ping Liu ◽  
Dai-Hong Guo ◽  
...  

This study aims at investigating the radioprotective effect of ethanol extract from Ji-Xue-Teng (JXT,Spatholobus suberectus) on radiation-induced hematopoietic alteration and oxidative stress in the liver. Mice were exposed to a single acuteγ-radiation for the whole body at the dose of 6.0 Gy, then subjected to administration of amifostine (45 mg/kg) or JXT (40 g crude drug/kg) once a day for 28 consecutive days, respectively. Bone marrow cells and hemogram including white cells, red cells, platelet counts, and hemoglobin level were examined. The protein expression levels of pJAK2/JAK2, pSTAT5a/STAT5a, pSTAT5b/STAT5b, and Bcl-2 in bone marrow tissue; levels of reactive oxygen species (ROS); and the activity of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum and liver tissue were determined. At the end of the experiment, the effect of JXT on cell viability and G-CSF and G-CSFR levels in NFS-60 cells were tested by CCK-8 assay, ELISA, and flow cytometry. The results showed that the mice exposed toγ-radiation alone exhibited a typical hematopoietic syndrome. In contrast, at the end of the 28-day experiment, irradiated mice subjected to oral administration of JXT showed an obvious improvement on blood profile with reduced leucopenia, thrombocytopenia (platelet counts), RBC, and hemoglobin levels, as well as bone marrow cells. The expression of pJAK2/JAK2, pSTAT5a/STAT5a, and Bcl-2 in bone marrow tissue was increased after JXT treatment. The elevation of ROS was due to radiation-induced toxicity, but JXT significantly reduced the ROS level in serum and liver tissue, elevated endogenous SOD and GSH-PX levels, and reduced the MDA level in the liver. JXT could also increase cell viability and G-CSFR level in NFS-60 cells, which was similar to exogenous G-CSF. Our findings suggested that oral administration of JXT effectively facilitated the recovery of hematopoietic bone marrow damage and oxidative stress of the mice induced byγ-radiation.


Drug Research ◽  
2021 ◽  
Author(s):  
Nazira Fatima ◽  
Muhammad Saleem ◽  
Umar Shahbaz

Abstract Aim of study This study investigated whether pre-activated bone marrow cells with sodium nitro prusside have effectiveness in the inhibition of diabetic wound healing in diabetic rabbits. In diabetic skin disorders and conditions involved redox state disturbances. The aim was to determine the effect of two minimum dosages of sodium nitro prusside, and its’ potential with bone marrow cells for chronic wound healing in-vivo. Methods Full-thickness skin dorsal wounds were created on diabetic rabbits. The effects of two minimum concentrations of sodium nitro prusside solution with bone marrow cells on wound healing were studied. The useful combination of sodium nitro prusside with bone marrow cells on wound repair may be attributed to its functional influences on inflammation, angiogenesis, cell proliferation, matrix deposition, and remodeling. Results The in-vivo experiments confirmed that pre-activated bone marrow cells contributed to wound healing by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis. In histological results, improved collagen deposition, enhanced re-epithelization, angiogenesis, and decreased inflammatory infiltration were also detected in wound biopsies. Conclusions For the treatment of chronic wounds, cell-based therapy was an attractive approach. Bone marrow cells have a low ability to differentiate various types of cells or late healing without pretreatment. So it was needed to increase their potency of differentiation. The transplantation of pretreated bone marrow cells with a prime quantity of sodium nitro prusside solution improved chronic wound healing with a greater level of growth factors and a minimum level of oxidative stress.


2017 ◽  
Vol 36 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Dinesh Tiwari ◽  
Geeta Vanage

Bisphenol A (BPA) is an estrogenic chemical used in the production of polycarbonate plastics and epoxy resins. Our earlier studies have demonstrated that BPA is a potent reproductive and genotoxic agent and affects the normal physiological functions. The objective of this study was to evaluate whether exposure to BPA induces oxidative stress. The male Holtzman rats were orally gavaged with BPA (0.01 mg and 5.0 mg/kg/bw) over the period of 6 days. Animals were euthanized by cervical dislocation at the end of the treatments; bone marrow cells and blood lymphocytes were aspirated; testis and epididymis were collected, immediately frozen in liquid nitrogen, and stored at −80°C. These samples were utilized for the determination of lipid peroxidation and various antioxidant enzymes such as superoxide dismutase, catalase, and nonenzymatic reduced glutathione. The results demonstrated that BPA caused an increase in lipid peroxidation and a decrease in activity of various enzymatic and nonenzymatic antioxidants in bone marrow cells, blood lymphocytes, and testicular and epididymal tissues. The findings of the current study suggest that BPA exposure induced oxidative stress, which could be one of the possible mechanisms causing reproductive and genetic toxicity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3173-3173
Author(s):  
Hiroshi Okabe ◽  
Takahiro Suzuki ◽  
Eisuke Uehara ◽  
Masuzu Ueda ◽  
Tadashi Nagai ◽  
...  

Abstract Abstract 3173 Background and Purpose: Deferasirox (DFX) is an oral iron chelator that enables effective chelation by once daily administration.Since the introduction of DFX, iron chelation therapy (ICT) for transfusional iron overload has attracted increased attention. It is known that excess iron increases oxidative stress and affects various organs, such as the liver, heart and endocrine glands, negatively. Sufficient ICT can remove excess iron and improve organ dysfunction in iron-overloaded patients, and accumulating data has indicated that efficient ICT improves the survival of transfusion-dependent patients with myelodysplastic syndromes (MDS). Recently, we experienced a case of MDS with transfusional iron overload in which the hematopoietic data improved unexpectedly after administration of DFX without any other specific treatments (Okabe H et al. Rinsho Ketsueki, 2009). An increasing number of similar cases has been reported. This clinical observation indicates that iron overload could also affect the hematopoietic system unfavorably, via, as yet, unknown mechanisms. Methods and Results: We generated iron-overloaded mice to investigate how iron overload affects hematopoiesis in vivo. C57BL6 mice were injected with a total of 200 mg of iron dextran, intraperitoneally over 4 weeks. The iron-overloaded mice showed pigmented skin and hepatosplenomegaly, and histological examination showed excess iron deposition in the bone marrow, liver, spleen and heart. The serum and organ iron concentrations in these mice markedly increased. However, the iron-overloaded mice did not show any significant changes in peripheral blood counts or the proportion of immature hematopoietic cells in the bone marrow. To further examine the effects of excess iron on the biological functions of hematopoietic stem and progenitor cells (HSPCs), we performed bone marrow transplantation (BMT) assays. First, to assess the hematopoietic reconstitutional capacity of the HSPCs of iron-overloaded mice, we transplanted bone marrow cells (1×106 cells) from iron-overloaded mice or normal mice into lethally irradiated normal recipient mice along with the same number of normal competitor cells. We found no significant difference in hematopoietic reconstitution between the iron-overloaded donor cells and the normal donor cells, suggesting that the hematopoietic reconstitutional capacity of HSPCs in iron-overloaded mice is not significantly affected by iron. In contrast, when we transplanted bone marrow cells from normal mice (2×106 cells) into iron-overloaded recipients, hematopoietic recovery was significantly delayed, in particular platelet counts (at 2 weeks after BMT, normal recipients vs. iron-overloaded recipients, 63.4±9.4 vs. 18.7±4.7×104/μl, respectively, p<0.001). This indicates that excess iron disturbs the function of the bone marrow microenvironment and delays hematopoietic reconstitution. Microarray and quantitative RT-PCR analysis of non-hematopoietic bone marrow cells (CD45-/Ter119-) from the iron-overloaded mice demonstrated significant reductions in CXCL12, VCAM-1, Kit-ligand and IGF-1, which are important regulators of hematopoiesis. In addition, in the iron-overloaded mice, the serum concentration of erythropoietin and the expression level of thrombopoietin in the liver were also significantly reduced. Furthermore, increased oxidative stress levels were observed in the iron-overloaded liver and bone marrow. Conclusion: We did not observe any direct effects of excessive iron on hematopoietic cells, but found significant impairment of the hematopoietic microenvironment in the bone marrow of iron-overloaded mice. These results suggest that oxidative stress induced by excess iron could disturb the hematopoiesis-supporting capacity of the bone marrow microenvironment by reducing the expression of many essential molecules. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document