Combinatorial ChIP and bisulfite sequencing (BisChIP-seq)

2020 ◽  
pp. 387-395
Author(s):  
Jingjing Tong ◽  
Zhihua Wang
Keyword(s):  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Brennan Hyden ◽  
Craig H. Carlson ◽  
Fred E. Gouker ◽  
Jeremy Schmutz ◽  
Kerrie Barry ◽  
...  

AbstractSex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirotaka Yamagata ◽  
Hiroyuki Ogihara ◽  
Koji Matsuo ◽  
Shusaku Uchida ◽  
Ayumi Kobayashi ◽  
...  

AbstractThe heterogeneity of major depressive disorder (MDD) is attributed to the fact that diagnostic criteria (e.g., DSM-5) are only based on clinical symptoms. The discovery of blood biomarkers has the potential to change the diagnosis of MDD. The purpose of this study was to identify blood biomarkers of DNA methylation by strategically subtyping patients with MDD by onset age. We analyzed genome-wide DNA methylation of patients with adult-onset depression (AOD; age ≥ 50 years, age at depression onset < 50 years; N = 10) and late-onset depression (LOD; age ≥ 50 years, age at depression onset ≥ 50 years; N = 25) in comparison to that of 30 healthy subjects. The methylation profile of the AOD group was not only different from that of the LOD group but also more homogenous. Six identified methylation CpG sites were validated by pyrosequencing and amplicon bisulfite sequencing as potential markers for AOD in a second set of independent patients with AOD and healthy control subjects (N = 11). The combination of three specific methylation markers achieved the highest accuracy (sensitivity, 64%; specificity, 91%; accuracy, 77%). Taken together, our findings suggest that DNA methylation markers are more suitable for AOD than for LOD patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laura Santini ◽  
Florian Halbritter ◽  
Fabian Titz-Teixeira ◽  
Toru Suzuki ◽  
Maki Asami ◽  
...  

AbstractIn mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation.


GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Colin Farrell ◽  
Michael Thompson ◽  
Anela Tosevska ◽  
Adewale Oyetunde ◽  
Matteo Pellegrini

Abstract Background Bisulfite sequencing is commonly used to measure DNA methylation. Processing bisulfite sequencing data is often challenging owing to the computational demands of mapping a low-complexity, asymmetrical library and the lack of a unified processing toolset to produce an analysis-ready methylation matrix from read alignments. To address these shortcomings, we have developed BiSulfite Bolt (BSBolt), a fast and scalable bisulfite sequencing analysis platform. BSBolt performs a pre-alignment sequencing read assessment step to improve efficiency when handling asymmetrical bisulfite sequencing libraries. Findings We evaluated BSBolt against simulated and real bisulfite sequencing libraries. We found that BSBolt provides accurate and fast bisulfite sequencing alignments and methylation calls. We also compared BSBolt to several existing bisulfite alignment tools and found BSBolt outperforms Bismark, BSSeeker2, BISCUIT, and BWA-Meth based on alignment accuracy and methylation calling accuracy. Conclusion BSBolt offers streamlined processing of bisulfite sequencing data through an integrated toolset that offers support for simulation, alignment, methylation calling, and data aggregation. BSBolt is implemented as a Python package and command line utility for flexibility when building informatics pipelines. BSBolt is available at https://github.com/NuttyLogic/BSBolt under an MIT license.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Jing-dong Zhou ◽  
Ting-juan Zhang ◽  
Zi-jun Xu ◽  
Zhao-qun Deng ◽  
Yu Gu ◽  
...  

AbstractThe potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.


PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e13020 ◽  
Author(s):  
Jeong-Hyeon Choi ◽  
Yajun Li ◽  
Juyuan Guo ◽  
Lirong Pei ◽  
Tibor A. Rauch ◽  
...  

2012 ◽  
Vol 41 (4) ◽  
pp. e55-e55 ◽  
Author(s):  
Touati Benoukraf ◽  
Sarawut Wongphayak ◽  
Luqman Hakim Abdul Hadi ◽  
Mengchu Wu ◽  
Richie Soong

2017 ◽  
Vol 27 (9) ◽  
pp. 1589-1596 ◽  
Author(s):  
Carine Legrand ◽  
Francesca Tuorto ◽  
Mark Hartmann ◽  
Reinhard Liebers ◽  
Dominik Jacob ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii468-iii468
Author(s):  
Yuhei Sangatsuda ◽  
Fumihito Miura ◽  
Hiromitsu Araki ◽  
Masahiro Mizuguchi ◽  
Nobuhiro Hata ◽  
...  

Abstract BACKGROUND Two recurrent mutations, K27M and G34R/V, in H3F3A, encoding non-canonical histone H3.3, are reported in pediatric and young adult gliomas, whereas G34W mutation was prevalent in bone tumors. In contrast to K27 mutation, it remains elusive how G34 mutations affect the epigenome. Here we performed whole-genome bisulfite sequencing of four G34R-mutated gliomas and the G34V-mutated glioma cell line KNS-42. Similarly, we analyzed seven and three gliomas harboring K27M and no mutations in H3F3A, respectively. These data were compared with those on bone tumors. RESULTS G34R-mutated gliomas exhibited lower global methylation levels, similar CpG island (CGI) methylation levels, and compromised hypermethylation of telomere-proximal CGIs compared with those bearing K27M and no mutations. Hypermethylated regions specific to G34R-mutated gliomas were enriched for CGIs, including those of OLIG1, OLIG2, and canonical histone genes in the HIST1 cluster. These CGIs were hypermethylated in osteosarcomas with, but not without, the G34W mutation. In KNS-42 cells, CGIs with G34V-mutated histone H3.3 exhibited higher methylation levels than those with wild-type histone H3.3. This effect was also observed in the G34R-mutated glioma samples. CONCLUSIONS Gliomas bearing G34R/V mutations display characteristic methylomic alterations, some of which are shared by osteosarcomas with the G34W mutation. Deposition of G34 variants may lead to elevated methylation of otherwise hypomethylated, histone H3.3-bearing CGIs.


Sign in / Sign up

Export Citation Format

Share Document