Thermochemical processes

2022 ◽  
pp. 133-192
Author(s):  
Antonio Sánchez ◽  
Mariano Martín
Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


2021 ◽  
Vol 170 ◽  
pp. 669-682
Author(s):  
Raíssa Aparecida da Silveira Rossi ◽  
Janaína Miranda Barbosa ◽  
Marcos Antonio de Souza Barrozo ◽  
Luiz Gustavo Martins Vieira

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1392
Author(s):  
Joakim Andersson

Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However, electrolysis is an electricity-intensive process. Therefore, it is preferable that H2 is predominantly produced during times of low electricity prices, which is enabled by storage of H2. This work compares the integration of H2 storage in four liquid carriers, methanol (MeOH), formic acid (FA), ammonia (NH3) and perhydro-dibenzyltoluene (H18-DBT), in H-DR processes. In contrast to conventional H2 storage methods, these carriers allow for H2 storage in liquid form at ambient moderate overpressures, reducing the storage capacity cost. The main downside to liquid H2 carriers is that thermochemical processes are necessary for both the storage and release processes, often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to both the other considered carriers. For large storage volumes, MeOH-based H2 storage may also be an attractive option for the underground storage of compressed H2. The other considered liquid H2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH3, H18-DBT) and higher investment costs. However, for the use of MeOH in an H-DR process to be practically feasible, questions regarding process flexibility and the optimal sourcing of CO2 and heat must be answered.


2014 ◽  
Vol 1001 ◽  
pp. 126-130
Author(s):  
Tomáš Bakalár ◽  
Henrieta Pavolová ◽  
Milan Búgel ◽  
Ľubica Kozáková

Biomass is organic material, the second most important source of energy. Biomass is a renewable energy source. Wood biomass is used as source of energy for heating in many regions in Slovakia. It is because of its availability. Wood biomass is an easily accessible and affordable source of energy. At present, thermochemical processes, biochemical processes and physical-chemical processes are used for biomass utilization. In the article a suitable technology for combustion of wood chips is proposed. It consists of five main technological parts: transport of wood chips, silo, combustion boiler, and stack.


Author(s):  
Nguyen Hong Nam ◽  
Le Gia Thanh Truc ◽  
Khuong Duy Anh ◽  
Laurent Van De Steene

Agricultural and forest residues are potential sources of renewable energy in various countries. However, the difference in characteristics of biomass resources presents challenges for energy conversion processes which often require feedstocks that are physically and chemically consistent. This study presented a complete and comprehensive database of characteristics of a wide range of agricultural and forest residues. Moisture, bulk density, calorific value, proximate and elemental compositions, as well as cellulose, hemicellulose, and lignin compositions of a wide range of biomass residues were analyzed. The major impacts of the variability in biomass compositions to biochemical and thermochemical processes were also discussed.


Author(s):  
Antonio Zuorro ◽  
Janet B. García-Martínez ◽  
Andrés F. Barajas-Solano

Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to rapid growth and high carbon fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, HTL, gasification) have proven to be processed with higher viability, because they use all biomass. However, the biocrudes obtained from direct thermochemical conversion have substantial quantities of heteroatoms (oxygen, nitrogen, and sulfur) due to the complexity of the biomass's content of chemical components (lipids, carbohydrates, and proteins). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper's objective is to present a comprehensive review of recent developments on catalyst mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rekha A. ◽  
Vidhya A.

Recent research suggests that biochar is a promising approach to minimize soil contamination caused by heavy metals and organic pollutants. It is also involved in the amendment of soil by altering the nutrients, pH and other factors. Through intensive literature review, this paper was aimed to better understand the selection of feedstock processes, preparation, and characterization of biochar. Wide variety of feedstock used for the biochar production based on the cost effectiveness, ease availability and they are ecofriendly to the environment. Among the thermochemical processes, pyrolysis is the promising techniques followed for the production of BC. The stabilization efficacy was mainly determined by cation exchange capacity, pH, and ash content of the biochar. The physicochemical characteristic of the biochar is analyzed using various methods such as SEM, FTIR, TGA and BET analysis. The surface area plays a major role in the metal sorption. The quality characteristics of biochar as a soil amendment varied greatly with the feedstock materials and the pyrolysis conditions. Biochar plays a great role in increasing the pH which helps the acidic soil region and its high-water retention capacity enhance the moisture level in the soil which enhances the microbial communities and its activity. Biochar becomes stabilized in the soil by interacting with soil particles. The inherent characteristics of the biochar as dictated by feedstock and pyrolysis conditions, interact with climatic conditions such as precipitation and temperature to influence how long biochar carbon remains stored in the soil. Due to its carbon sequestration in the soil, it helps in increasing the fertility of the soil and also enhances the crop yield.


Sign in / Sign up

Export Citation Format

Share Document