Continuous Cultivation

2013 ◽  
pp. 607-661
Author(s):  
Shijie Liu
Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Aaron Gassmann

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious pests of maize in the United States. Since 2003, transgenic maize that produces insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) has been used to manage western corn rootworm by killing rootworm larvae, which feed on maize roots. In 2009, the first cases of field-evolved resistance to Bt maize were documented. These cases occurred in Iowa and involved maize that produced Bt toxin Cry3Bb1. Since then, resistance has expanded to include other geographies and additional Bt toxins, with some rootworm populations displaying resistance to all commercially available Bt traits. Factors that contributed to field-evolved resistance likely included non-recessive inheritance of resistance, minimal fitness costs of resistance and limited adult dispersal. Additionally, because maize is the primary agricultural crop on which rootworm larvae can survive, continuous maize cultivation, in particular continuous cultivation of Bt maize, appears to be another key factor facilitating resistance evolution. More diversified management of rootworm larvae, including rotating fields out of maize production and using soil-applied insecticide with non-Bt maize, in addition to planting refuges of non-Bt maize, should help to delay the evolution of resistance to current and future transgenic traits.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 722
Author(s):  
Renata Dobosz ◽  
Roman Krawczyk

The northern root-knot nematode, Meloidogyne hapla, is a major pest of many crop species. The objective of the study was to determine how M. hapla population dynamics is affected by two precrops, i.e., Trifolium pratense and Medicago sativa, in three crop durations: one, two and three years of continuous cultivation. Moreover, we set ourselves the task of evaluating the effect of the legume precrop soil on the growth of the succeeding tomato plant (Solanum lycopersicum) and on the nematode population. The experiment was performed outdoors in pots with naturally infected soil. Both precrop species investigated were found to modify the J2 nematode population density in the soil. The galls and nematode females with egg masses were observed on the roots of both studied plant species at the end of each growing season. They appeared to be more abundant on the red clover roots than on those of the alfalfa. The obtained data indicate that the spring soil sampling is more appropriate for the estimation of the M. hapla population density in the red clover precrop soil. The legume precrop soil had a limiting effect on tomato growth and fruit yield. The nematode population negatively influenced tomato growth. The experiment revealed that tomato plants could be planted in alfalfa precrop soil following at least three years of continuous alfalfa cultivation. The same cannot be said of the cultivation of red clover as a precrop for tomatoes.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 157
Author(s):  
Idan Koren ◽  
Sammy Boussiba ◽  
Inna Khozin-Goldberg ◽  
Aliza Zarka

Several green algae can divide by multiple fission and spontaneously synchronize their cell cycle with the available light regime. The yields that can be obtained from a microalgal culture are directly affected by cell cycle events. Chromochloris zofingiensis is considered as one of the most promising microalgae for biotechnological applications due to its fast growth and the flexible trophic capabilities. It is intensively investigated in the context of bio-commodities production (carotenoids, storage lipids); however, the pattern of cell-cycle events under common cultivation strategies was not yet characterized for C. zofingiensis. In this study, we have employed fluorescence microscopy to characterize the basic cell-cycle dynamics under batch and continuous modes of phototrophic C. zofingiensis cultivation. Staining with SYBR green—applied in DMSO solution—enabled, for the first time, the clear and simple visualization of polynuclear stages in this microalga. Accordingly, we concluded that C. zofingiensis divides by a consecutive pattern of multiple fission, whereby it spontaneously synchronizes growth and cell division according to the available illumination regime. In high-light continuous culture or low-light batch culture, C. zofingiensis cell-cycle was completed within several light-dark (L/D) cycles (14 h/10 h); however, cell divisions were synchronized with the dark periods only in the high-light continuous culture. In both modes of cultivation, daughter cell release was mainly facilitated by division of 8 and 16-polynuclear cells. The results of this study are of both fundamental and applied science significance and are also important for the development of an efficient nuclear transformation system for C. zofingiensis.


2008 ◽  
Vol 8 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Melanie T. Cushion ◽  
Margaret S. Collins ◽  
Michael J. Linke

ABSTRACT Pneumocystis spp. can cause a lethal pneumonia in hosts with debilitated immune systems. The manner in which these fungal infections spread throughout the lung, the life cycles of the organisms, and their strategies used for survival within the mammalian host are largely unknown, due in part to the lack of a continuous cultivation method. Biofilm formation is one strategy used by microbes for protection against environmental assaults, for communication and differentiation, and as foci for dissemination. We posited that the attachment and growth of Pneumocystis within the lung alveoli is akin to biofilm formation. An in vitro system comprised of insert wells suspended in multiwell plates containing supplemented RPMI 1640 medium supported biofilm formation by P. carinii (from rat) and P. murina (from mouse).Dramatic morphological changes accompanied the transition to a biofilm. Cyst and trophic forms became highly refractile and produced branching formations that anastomosed into large macroscopic clusters that spread across the insert. Confocal microscopy revealed stacking of viable organisms enmeshed in concanavalin A-staining extracellular matrix. Biofilms matured over a 3-week time period and could be passaged. These passaged organisms were able to cause infection in immunosuppressed rodents. Biofilm formation was inhibited by farnesol, a quorum-sensing molecule in Candida spp., suggesting that a similar communication system may be operational in the Pneumocystis biofilms. Intense staining with a monoclonal antibody to the major surface glycoproteins and an increase in (1,3)-β-d-glucan content suggest that these components contributed to the refractile properties. Identification of this biofilm process provides a tractable in vitro system that should fundamentally advance the study of Pneumocystis.


Author(s):  
Thai Minh Nguyen ◽  
Samuel Telek ◽  
Andrew Zicler ◽  
Juan Andres Martinez ◽  
Boris Zacchetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document