Optimization of an acrolein production process in a pilot-scale fixed-bed reactor

Author(s):  
M. Lei ◽  
F. Lesage ◽  
M.A. Latifi ◽  
S. Tretjak
1991 ◽  
Vol 23 (7-9) ◽  
pp. 1319-1326 ◽  
Author(s):  
I. E. Gönenç ◽  
D. Orhon ◽  
B. Beler Baykal

Two basic phenomena, reactor hydraulics and mass transport through biofilm coupled with kinetic expressions for substrate transformations were accounted for in order to describe the soluble COD removal mechanism in anaerobic fixed bed reactors. To provide necessary verification, experimental results from the long term operation of the pilot scale anaerobic reactor treating molasses wastewater were used. Theoretical evaluations verified by these experimental studies showed that a bulk zero-order removal rate expression modified by diffusional resistance leading to bulk half-order and first-order rates together with the particular hydraulic conditions could adequately define the overall soluble COD removal mechanism in an anaerobic fixed bed reactor. The experimental results were also used to determine the kinetic constants for practical application. In view of the complexity of the phenomena involved it is found remarkable that a simple simulation model based on biofilm kinetics is a powerful tool for design and operation of anaerobic fixed bed reactors.


2017 ◽  
Vol 11 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Rebecca Faschian ◽  
Ilyas Eren ◽  
Steven Minden ◽  
Ralf Pörtner

Fixed-bed processes, where cells are immobilized within macroporous carriers, are a promising alternative to processes with suspended cells. A scale-up concept is presented in order to evaluate the performance as part of process design of fixed-bed processes. Therefore,Lactococcus lactiscultivation in chemostat and batch mode was compared to fixed bed cultures on three different scales, the smallest being the downscaledMultifermwith 10 mL fixed bed units, the second a 100 mL fixed-bed reactor and the third a pilot scale reactor with 1 L fixed bed volume. As expected, the volume specific lactate productivity of all cultivations was dependent on dilution rate. In suspension chemostat culture a maximum of 2.3 g·L-1·h-1was reached. Due to cell retention in the fixed-beds, productivity increased up to 8.29 g·L-1·h-1at a dilution rate of D = 1.16 h-1(corresponding to 2.4·µmax) on pilot scale. For all fixed bed cultures a common spline was obtained indicating a good scale-up performance.


Author(s):  
Fernando Martínez ◽  
M Isabel Pariente ◽  
Juan Antonio Melero ◽  
Juan Ángel Botas

AbstractCatalytic Wet Peroxide Oxidation (CWPO) for the continuous treatment of a phenolic aqueous solution has been studied on a pilot scale process. The pilot plant has been designed by integration of a catalytic fixed bed reactor (FBR) with a continuous stirred tank reactor (CSTR). The CSTR is used as reservoir for the continuous delivering of a recirculation stream through the catalytic bed. The main part of phenol mineralization takes place by catalytic oxidation in the FBR. The mesoporous SBA-15 silica-supported iron oxide (Fe


2011 ◽  
Vol 393 (1-2) ◽  
pp. 161-170 ◽  
Author(s):  
Fei Wang ◽  
Man Luo ◽  
Wende Xiao ◽  
Xiaowei Cheng ◽  
Yingcai Long

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1522
Author(s):  
Daesung Song ◽  
Sung Yong Cho ◽  
Thang Toan Vu ◽  
Yen Hoang Phi Duong ◽  
Eunkyu Kim

The one-dimensional (1D) mathematical model of fixed bed reactor was developed for dimethyl ether (DME) synthesis at pilot-scale (capacity: 25–28 Nm3/h of syngas). The reaction rate, heat, and mass transfer equations were correlated with the effectiveness factor. The simulation results, including the temperature profile, CO conversion, DME selectivity, and DME yield of the outlet, were validated with experimental data. The average error ratios were below 9.3%, 8.1%, 7.8%, and 3.5% for the temperature of the reactor, CO conversion, DME selectivity, and DME yield, respectively. The sensitivity analysis of flow rate, feed pressure, H2:CO ratio, and CO2 mole fraction was investigated to demonstrate the applicability of this model.


2006 ◽  
Vol 78 (9) ◽  
pp. 1383-1384
Author(s):  
R. Pörtner ◽  
M. Seemuk ◽  
T. Linz ◽  
H. Schneider ◽  
D. Elsser

2019 ◽  
Vol 241 ◽  
pp. 227-235 ◽  
Author(s):  
Wala Abou Saoud ◽  
Aymen Amine Assadi ◽  
Monia Guiza ◽  
Sivachandiran Loganathan ◽  
Abdelkrim Bouzaza ◽  
...  

Author(s):  
Anthony G. Dixon ◽  
Behnam Partopour

Flow, heat, and mass transfer in fixed beds of catalyst particles are complex phenomena and, when combined with catalytic reactions, are multiscale in both time and space; therefore, advanced computational techniques are being applied to fixed bed modeling to an ever-greater extent. The fast-growing literature on the use of computational fluid dynamics (CFD) in fixed bed design reflects the rapid development of this subfield of reactor modeling. We identify recent trends and research directions in which successful methodology has been established, for example, in computer generation of packings of complex particles, and where more work is needed, for example, in the meshing of nonsphere packings and the simulation of industrial-size packed tubes. Development of fixed bed reactor models, by either using CFD directly or obtaining insight, closures, and parameters for engineering models from simulations, will increase confidence in using these methods for design along with, or instead of, expensive pilot-scale experiments.


Sign in / Sign up

Export Citation Format

Share Document